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Abstract 

 

 Nitrate (NO3⁻    ) loadings from stormwater runoff promote eutrophication in surface waters.  

Low Impact Development (LID) is a type of best management practice aimed at restoring the 

hydrologic function of watersheds and removing contaminants before they are discharged into 

ground and surface waters.  Also known as rain gardens, a bioretention system is a LID 

technology that is capable of increasing infliltration, reducing runoff rates and removing 

pollutants.  They can be planted with visually appealing vegetation, which plays a role in nutrient 

uptake.  A modified bioretention system incorporates a submerged internal water storage zone 

(IWSZ) that includes an electron donor to support denitrification.  Modified (or denitrifying) 

bioretention systems have been shown to be capable of converting NO3⁻     in stormwater runoff to 

nitrogen gas through denitrification; however, design guidelines are lacking for these systems, 

particularly under Florida-specific hydrologic conditions. 

 

 The experimental portion of this research investigated the performance of denitrifying 

bioretention systems with varying IWSZ medium types, IWSZ depths, hydraulic loading rates 

and antecedent dry conditions (ADCs).  Microcosm studies were performed to compare 

denitrification rates using wood chips, gravel, sand, and mixtures of wood chips with sand or 

gravel media.  The microcosm study revealed that carbon-containing media, acclimated media 

and lower initial dissolved oxygen concentrations will enhance NO3⁻     removal rates.  The gravel-

wood medium was observed to have high NO3⁻     removal rates and low final dissolved organic 
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carbon concentrations compared to the other media types.  The gravel-wood medium was 

selected for subsequent storm event and tracer studies, which incorporated three completely 

submerged columns with varying depths.  Even though the columns were operated under 

equivalent detention times, greater NO3⁻     removal efficiencies were observed in the taller 

compared to the shorter columns.  Tracer studies revealed this phenomenon was attributed to the 

improved hydraulic performance in the taller compared to shorter columns.  In addition, greater 

NO3⁻     removal efficiencies were observed with an increase in ADCs, where ADCs were positively 

correlated with dissolved organic carbon concentrations.   

 

Data from the experimental portion of this study, additional hydraulic modeling 

development for the unsaturated layer and unsaturated layer data from other studies were 

combined to create nitrogen loading model for modified bioretention systems.  The processes 

incorporated into the IWSZ model include denitrification, dispersion, organic media hydrolysis, 

oxygen inhibition, bio-available organic carbon limitation and Total Kjeldahl Nitrogen (TKN) 

leaching.  For the hydraulic component, a unifying equation was developed to approximate 

unsaturated and saturated flow rates.  The hydraulic modeling results indicate that during ADCs, 

greater storage capacities are available in taller compared to shorter IWSZs   Data from another 

study was used to develop a pseudo-nitrification model for the unsaturated layer.  A hypothetical 

case study was then conducted with SWMM-5 software to evaluate nitrogen loadings from 

various modified bioretention system designs that have equal IWSZ volumes.  The results 

indicate that bioretention systems with taller IWSZs remove greater NO3⁻     loadings, which was 

likely due to the greater hydraulic performance in the taller compared to shorter IWSZ designs.  
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However, the systems with the shorter IWSZs removed greater TKN and total nitrogen loadings 

due to the larger unsaturated layer volumes in the shorter IWSZ designs.
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Chapter 1: 

Introduction 

 

Stormwater runoff is a major source of surface water degradation in the United States 

(Akan and Houghtalen, 2003).  Urbanization increases impervious areas, which intensifies 

nitrogen runoff to downstream surface waters.  Excessive nitrogen runoff promotes 

eutrophication, which is known to contribute to fish kills, loss of biodiversity, hypoxic zones, 

seagrass mortality, physical interferences with recreation and rapid filling of surface water 

bodies (Vaccari et al, 2006; Cameron et al., 2010; Moorman et al., 2010). 

 

Best Management Practices (BMPs) have been developed in an attempt to control 

nitrogen loadings from urban areas.  BMPs were originally created to control flooding in 

developed areas; however, the Federal Clean Water Act, passed in 1972, facilitated the 

understanding of how non-point sources (e.g., stormwater runoff) contribute to surface water 

pollution (Gurr and Nnadi, 2009).  Consequently, BMPs were modified to provide treatment, 

which has been further enhanced through the development of Low-Impact-Development (LID) 

technologies.  LID is one category of BMPs, which more closely focuses on maintaining or 

restoring the pre-development hydrologic and water quality characteristics of a site (Dietz, 2007; 

Viesmann et al. 2009). 
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One type of LID technology are bioretention systems, also known as “raingardens”, 

“bioinfiltration” or bioswales (Davis et al., 2006).  Bioretention systems have the capability of 

reducing runoff volumes, attenuating peak flows and removing solids, organics, metals, 

phosphorous and various forms of nitrogen (Davis et al., 2006).  As a unique advantage 

compared with other LID technologies, bioretention systems can be modified to include a 

denitrification zone, or submerged internal water storage zone (IWSZ), for removing nitrate (NO3⁻    

) (Kim et al., 2003; Brown et al., 2011).  Denitrification in the IWSZ occurs because portions of 

the zone can become anoxic as aerobic and facultative microorganisms utilize dissolved oxygen 

in a submerged IWSZ that is supplied with an electron-donor (e.g. wood chips, elemental sulfur) 

(Kim et al., 2003; Davis et al., 2009; Ergas et al., 2010). 

 

There is a lack of information available to provide IWSZ design guidance for 

bioretention systems.  Most prior research on modified bioretention systems has focused on 

evaluating denitrification performance in relation to one or two design parameters (e.g., 

hydraulic loading rate, IWSZ depth) (Kim et al., 2003; Lucas et al., 2007b; Zinger et al, 2007; 

Lucas et al 2011a).  In addition, a simple mathematical model for calculating nitrate (NO3⁻    ) 

removal in IWSZs has not been developed (Collins et al., 2010).  Such a model should be able to 

predict performance in IWSZs with varying depth, detention time, antecedent dry conditions 

(ADCs), and hydraulic and NO3⁻     loading rates.  Development of this model will allow designers 

to accurately estimate NO3⁻     load reductions from modified bioretention systems. 

 

In addition to improving bioretention IWSZ design guidance, my research begins the 

groundwork for designing a wet detention via bioretention (biodetention) “treatment train”.  This 
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unique system takes advantage of the elevation difference between on-site and downstream water 

elevations to promote nitrification in the sand layer, where subsequent denitrification occurs in 

the IWSZ.  Where appropriate, this system can be designed so that bioretention precedes wet 

detention as implemented by Sarasota County, in Sarasota, FL (Connor, personal 

communication, May 17, 2012).  As later discussed, nitrogen loadings from wet detention 

systems are of particular concern for sub-tropical regions, such as Florida. 

 

The overall goal of this research was to provide guidelines for the design of the IWSZ in 

bioretention systems.  The following research questions and objectives were used to guide this 

research: 

 How do biological processes affect the dynamic performance of IWSZs? 

- Investigate NO3⁻     removal performance using unacclimated and acclimated media. 

- Investigate NO3⁻     removal performance under aerobic and anoxic environments. 

- Investigate NO3⁻     removal performance under varying ADCs. 

- Investigate NO3⁻     removal performance under varying influent NO3⁻    concentrations. 

- Investigate NO3⁻     removal performance under varying hydraulic loading rates. 

 How do hydraulic processes affect the dynamic performance of IWSZs? 

- Evaluate the hydraulic performance of IWSZs. 

- Refine the general equations used to calculate Pe to produce more accurate 

results. 

- Evaluate the removal efficiency for NO3⁻    and other water quality parameters of 

three IWSZs with varying depths that were operated with equal detention times. 
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 Can a mechanistic-based nitrogen load reduction model be developed for modified 

bioretention system designers? 

- Develop a simplified approach to model saturated and unsaturated flows through 

modified bioretention systems using SWMM-5 software. 

- Develop a nitrogen transformation model that can be used with SWMM-5. 

- Conduct a case study that evaluates annual nitrogen load reductions by 

implementing various bioretention system designs. 
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Chapter 2: 

Literature Review 

 

2.1 Overview 

 This chapter briefly describes the issues and processes that affect nitrogen removal in 

bioretention and other related treatment systems.  Section 2.2 describes the variable nature of 

stormwater runoff from both a water quality and water quantity perspective.  Section 2.3 

describes how bioretention and related systems are used to control nitrogen loadings.  Section 2.4 

describes the various nitrogen transformation processes that occur within each layer in a 

bioretention system.  Section 2.5 more thoroughly describes how solid lignocellulosic material 

promotes nitrate (NO3⁻    ) removal in the internal water storage zone (IWSZ) of bioretention 

systems.  Separate literature reviews are also provided in Chapters 3, 4 and 5 where more 

emphasis is focused on the biological, hydraulic and modeling aspects of bioretention systems, 

respectively.  

 

2.2 Stormwater Runoff Sources and Characteristics 

In undeveloped areas, stormwater runoff is created when the rainfall rate exceeds the 

infiltration rate (in general terms) of a given surface.  The volume and rate of stormwater runoff 

can be estimated if the climate type, season, region, soil type, land cover, topography, rainfall 

intensity and rainfall duration for a given surface is known (Bedient and Huber, 2002).  

However, in developed areas, the volume and rate of stormwater runoff is intensified by 
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increases in impervious surfaces, tree removal, surface leveling, soil flipping, surface 

compaction and conveyance of runoff through stormwater pipes and channels (Akan and 

Houghtalen, 2003). 

 

Increases in stormwater runoff also impair surface water quality.  During dry weather 

conditions, pollutants build up on land surfaces (Akan and Houghtalen, 2003).  During a rainfall 

event, these pollutants are carried away from runoff and contribute to surface water degradation.  

The pollutants originate from a number of sources. including fertilizer use, animal and bird feces, 

automobiles, street litter, street sweepings, herbicide and pesticide residues, eroded soil from 

construction sites and atmospheric deposition (Viesmann et al., 2009; Akan and Houghtalen, 

2003; Luell et al., 2011).     

 

Nitrogen speciation characteristics of stormwater runoff are highly variable (see Pitt et 

al., 2005).  Factors affecting runoff quality in stormwater include: pollutant sources, land use, 

land use density, hydrology, antecedent dry conditions (ADCs) (time between storm events) and 

time of sampling during a rainfall event.  Water quality characteristics of stormwater runoff are 

usually quantified as event mean concentrations (EMC), because the pollutant concentration of 

runoff changes during a rainfall event.  An EMC is the total pollutant mass taken up by runoff 

divided by the volume of runoff (Bertrand-Krajewski et al., 1998).  The “first flush”, or first one-

half to one inch of runoff, normally contains the highest concentrations of pollutants.  

Stormwater treatment regulations often require stormwater systems to be designed to treat the 

first flush. 
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Stormwater runoff water quantity characteristics are extremely variable due to the range 

of sub-processes involved.  Small rainfall events dominate the total number of rainfall events.  In 

Florida, approximately 88% of all rainfall events generate less than one inch of rainfall, which 

means >88% generate less than one inch of runoff (Harper and Baker, 2007).   As discussed 

previously, ADCs have an impact on pollutant concentrations in runoff.  Harper and Baker 

(2007) compiled a list of precipitation data from Florida and found average antecedent dry 

periods of 4.12 and 1.89 days for the dry and wet season, respectively.  This information is 

useful in determining the minimum time between storm events that generate runoff, which is 

primarily dependent on specific site characteristics. 

 

2.3 Best Management Practices 

Best management practices (BMPs) are used to alleviate the detrimental effects of 

stormwater runoff (Viesmann et al., 2009).  There are two types of BMPs: structural and 

nonstructural.  Structural BMPs are physically manufactured or natural technologies and include: 

ponds (e.g., retention and detention), LID (also included in non-structural BMPs), gross pollutant 

removal devices (e.g., baffle boxes and hydrodynamic separators) and erosion control measures 

(e.g., rip rap and vegetation).  Nonstructural BMPs are human activities related to stormwater 

management, such as planning, inspection, public education, compliance/enforcement and 

operations and maintenance.  Both structural and non-structural BMPs are inter-related and 

essential for effectively managing stormwater runoff.   

 

The total nitrogen and NO3⁻     removal performance of various BMPs can be found in the 

International Stormwater Best Management Practices Database (2010).  Based on these data, 
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media filters have the best TN removal performance (41%), but are poor in NO3⁻     removal.  Like 

bioretention systems, media filters are known to clog, which increases maintenance 

requirements.  The International Stormwater Best Management Practices Database (2010) also 

provides interesting information regarding runoff influent values.  Total nitrogen influent 

concentrations for detention ponds and media filters are almost 1 mg/L higher than the other 

reported BMPs.  This may have occurred because detention ponds and media filters are used in 

many high water table environments, such as Florida.  Low elevation differences between the 

ground surface and the water table often require engineers to design inlets and pipes to convey 

on-site runoff to wet detention systems.  In the case where highly impervious areas are desired 

for small sites with low infiltration (high water table), media filters are used.  Both of these 

examples reduce and/or eliminate the potential for runoff to be pretreated by pervious vegetated 

areas before being discharged into a BMP area.    

 

A wet detention system is a pond that can detain or attenuate runoff to reduce 

downstream flooding.  A critical issue for wet detention systems is its limitation in removing 

nutrients.  The main nitrogen removal mechanism is sedimentation.  After most of the 

sedimentation has taken place, additional nitrogen removal is inhibited (Schueler, 1987).  This 

may occur because other natural nitrogen removal mechanisms require anoxic zones and a bio-

available electron donor to function.  Schuler (1987) developed an empirical equation that relates 

the detention time with TN removal efficiency for wet detention systems.  The equation indicates 

a negligible increase in TN removal efficiency for detention times greater than 14 days and TN 

removal efficiencies are less than 50%.  This presents a significant challenge if a proposed 
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development is located in a high water table environment and TN removal efficiency 

requirements are greater than 50%. 

 

 2.3.1 Low Impact Development 

Another form of a structural BMP is LID.  The intention of LID is to minimize the 

hydrologic impact created by development (Dietz, 2007).  LID strategies often involve 

developing stormwater management systems within infrastructure, which serves another purpose 

for a development.  Pavement, roof tops, gardens and storage reservoirs are examples of 

infrastructure than can be used for LID with permeable pavement, green roofs, bioretention 

systems and rain barrels, respectively (Dietz, 2007; Masi et al., 2011).  LID or “treatment train” 

designs of LID and wet detention systems may be an ideal strategy for both controlling flooding 

and removing pollutants in high water table environments, such as Florida. 

  

2.3.2 Bioretention Systems 

Bioretention systems are emerging as a preferred BMP (Davis et al., 2009).  Bioretention 

systems were originally designed for reducing runoff volumes by enhancing infiltration 

(Morzaria-Luna et al., 2004).  However, a number of studies have reported additional benefits of 

bioretention through surface water attenuation and pollutant removal (Morzaria-Luna et al., 

2004).  Many bioretention studies have confirmed the removal of suspended solids, phosphorus, 

heavy metals, oil and grease, chlorides and fecal indicator bacteria (Davis et al., 2009).   

 

The majority of bioretention studies have focused on conventional systems.  

Conventional systems have multiple layers which include: a ponding area, vegetation, mulch, top 
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soil, and sand layers, as shown in Figure 2.1.  Davis et al. (2006) performed laboratory studies on 

conventional bioretention systems with sampling ports constructed at varying depths.  One of the 

experiments in the study used a 4.1 cm/hr synthetic storm event lasting for six hours.  Overall, 

TKN removal efficiencies between 74 and 83% were observed, with 42 to 63% of the TKN 

removal occurring in the mulch layer.  In addition, TN removal efficiencies between 66 and 83% 

were measured.  However, effluent NO3⁻    concentrations from all sampling ports were greater than 

the influent.  When the flow rate was reduced to 2 cm/hr, 19 to 79% NO3⁻    removal was observed 

in the lower port.  The decrease in the flow rate most likely created anoxic conditions in the 

lower section; thereby, creating a mechanism for denitrification.      

 

Various types of bioretention configurations are shown in Figure 2.2.  Conventional 

bioretention systems are best for infiltration and/or if the surrounding soil characteristics are 

sandy, as shown in Figure 2.2a.  Bioretention systems sometimes include a gravel layer or 

geotextile fabric encompassing the discharge pipe to prevent clogging, as shown in Figures 2.2b 

and 2.2c (Davis et al., 2009).  Also, overflow weirs are sometimes used to ensure that the water 

surface elevation does not exceed the depth of the ponding area to prevent on-site flooding.  

Conventional bioretention systems with under-drains can incorporate impermeable liners and are 

good for reducing on-site flooding, reducing groundwater contamination and/or if soil 

characteristics are poorly-drained, as shown in Figure 2.2b (PGC, 2007).  Modified bioretention 

systems can incorporate impermeable liners and are desired for attenuation, reducing 

groundwater contamination, NO3⁻     removal and/or if soil characteristics are poorly-drained, as 

shown in Figure 2.2c (PGC, 2007). 
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Nitrogen removal efficiencies from conventional and modified bioretention system 

studies can be found in Collins et al. (2010).  Both systems (conventional and modified) have 

similar sedimentation, filtration and nitrification performance.  TKN is removed through all of 

these processes, which can explain why median TKN removal efficiencies of conventional 

(44.4%) and modified (54.1%) bioretention systems are comparable.  However, the main 

advantage of modified bioretention systems is NO3⁻     removal performance.  Unlike TKN, median 

NO3⁻     removal efficiencies for modified systems (65%) are greater than conventional systems 

(8%).  Denitrification can occur in conventional systems, but the lack of a carbon source and 

anoxic conditions greatly inhibits NO3⁻     removal.  The numerous reports of negative NO3⁻     

removal efficiencies for conventional systems (Collins et al., 2010) provide insight to this 

phenomenon. 

 

Many water quality treatment processes occur in bioretention systems.  Bioretention 

design guidelines provide information on how physical, chemical and biological processes can 

be incorporated into the system; however, little research has focused on providing design 

guidance for the IWSZ.  Brown et al. (2011) observed longer IWSZ retention times (greater 

depths) increase total nitrogen and phosphorus removal; however, this study compared two field 

bioretention systems with different media layers, vegetative covers, IWSZ depths and runoff 

volumes when comparing two bioretention cells.  Laboratory studies by Kim et al. (2003) and 

Zinger et al. (2007a) were more controlled, which provides greater insight. 

 

Kim et al. (2003) developed the modified bioretention system by incorporating an IWSZ 

with carbon-containing media under the sand layer.  The NO3⁻     removal performance of various 
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sand-mixed electron donor media types can be found elsewhere (Kim et al., 2003; Gibert et al., 

2010).  A decrease in NO3⁻    removal efficiency was observed with higher flow rates and/or 

influent NO3⁻     concentrations.  A lag period before NO3⁻    removal was observed when the columns 

were drained and then operated after 30 and 84-day dormant periods.  However, nearly complete 

nitrate removal was observed when the columns were left submerged and then operated after 7 

and 37-day dormant periods (or ADCs).  The authors concluded that newspaper was the best 

electron-donor and that near complete NO3⁻     removal efficiency could be achieved if stormwater 

remained in the IWSZ for more than seven days. 

 

The study by Kim et al. (2003) has some drawbacks.  The water source used in the study 

was dechlorinated tap water, with additional inputs of total dissolved solids, NO3⁻     and 

phosphorous, and no added organic carbon.  Nitrate removal rates in the control columns could 

have been greater if organic carbon was included in the source water because a carbon source 

could be used for denitrification.  Also, this study considered the NO3⁻     mass loading rate 

(mg/day-N) as the prime independent variable of interest; however, designers also need to know 

NO3⁻     removal efficiency with respect to IWSZ depth (or volume).  For example, two bioretention 

systems could have the same NO3⁻     mass loading rate, but have different IWSZ depths.  In this 

case, the NO3⁻     removal efficiency of each system will be different, as indicated by Zinger et al. 

(2007). 

 

 

Zinger et al. (2007a) performed mesocosm studies on modified bioretention units with 

different sand-mixed carbon sources (no carbon, pea straw and red-gum) and IWSZ depths (0, 

15, 45 and 60 cm).  An IWSZ depth of 45 cm was observed to be the optimum depth with TN 
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and NO3⁻     removal efficiencies of 74 and 99 percent, respectively.  However, TN removal 

efficiencies for all units were between 70 and 74%.  In addition, declining removals of ammonia 

and org-N were observed with increasing IWSZ depth.  The authors reasoned that the decreases 

in ammonia and organic nitrogen occurred because mineralization was inhibited by the anoxic 

conditions present in the IWSZ.  

 

Little detail was provided in the study by Zinger et al. (2007a).  The study did show how 

the IWSZ depth affects different nitrogen species, but did not consider varying nitrogen loading 

rates or detention times.  In addition, the study investigated one storm event type, which was a 

slug load of the average runoff volume from a storm event.  This is a concern because it is 

impossible to know the difference in removal performance between the discharged portion 

retained in the IWSZ from the previous storm event and the runoff portion entering and leaving 

the system on the same day.  In addition, nitrogen species removal performance is likely to 

change with different storm event types, making the usefulness of the data limited.   

 

Though much research has been performed on bioretention systems, peer-reviewed 

studies have yet to focus on bioretention system performance in high water table environments.  

In addition, poor NO3⁻     removal performance has been observed when a permanently saturated 

IWSZ is not incorporated into the system (Davis et al., 2001; Hsieh and Davis, 2005a; Hsieh and 

Davis, 2005b; Davis et al., 2006; Dietz and Clausen, 2006; Hunt et al., 2006; Hsieh et al., 2007; 

Lucas and Greenway, 2011b).  Both of these issues can be solved by introducing an impermeable 

liner around the IWSZ.  Such inclusion would prevent bioretention systems from draining 

(lowering) the water table and enhance NO3⁻     removal performance. 
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 2.3.3 Denitrification Beds 

Schipper et al. (2010) conducted a brief review of denitrifying bioreactors, which use 

carbon sourced treatment systems to promote denitrification.   Denitrification walls, beds and 

layers are three types of denitrifying bioreactors, of which, denitrification beds most resemble an 

IWSZ in bioretention systems.  Denitrification beds are filled with wood chips and are used for a 

variety of concentrated NO3⁻     discharges including wastewater and tile/drain discharges from 

agriculture.  At times, denitrification beds use an impermeable liner.   

 

Critical information can be gathered from denitrification bed research.  Moorman et al. 

(2010) observed wood chip decompositions of 75 and 13 percent after nine years of operation 

when compared to areas under occasional and permanent anoxic conditions, respectively.  Media 

saturation affects system longevity from the loss of carbon substrate and increases dissolved 

organic carbon leaching as carbon is washed out of the system.  In addition, the use of un-

acclimated media has not limited system performance as denitrifiers present in soil and water 

eventually colonize the systems when a favorable environment is provided (Schipper et al., 

2010).  Cameron and Schipper (2010) found little difference in denitrification performance in 

regards to wood chip media size (4 to 61 mm) and type (softwood; hardwood or eucalyptus). 

 

2.4 Nitrogen Removal Mechanisms in Bioretention System Media 

Sedimentation, immobilization, filtration, nitrification, plant uptake and denitrification 

are processes that remove nitrogen in bioretention systems (USEPA 1999; Lucas and Greenway 

2011b).  During a storm event, stormwater runoff flows into and fills the ponding area where 

larger particles containing particulate organic nitrogen (org-N) settle.  Particulate org-N can also 
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be physically removed, or filtered, in the mulch and/or sand layers.  Soluble org-N can be 

hydrolyzed to ammonium by plants or microorganisms in the sand layer.  Also, as runoff flows 

through the mulch layer, some of the ammonium (NH4
+
) is immobilized by plants and 

microorganisms to organic nitrogen for protein synthesis (Kadlec and Wallace, 2009) or 

adsorbed to negatively charged sites on clay particles.  Runoff from the mulch layer is then 

conveyed to the unsaturated sand layer where aerobic conditions enable NH4
+
 to be nitrified to 

NO3⁻    .  When runoff enters the root zone (within the sand layer), or rhizosphere, NO3⁻    can be 

removed by plant uptake (Recous et al., 1992).   

 

The final removal mechanism involves denitrification, where NO3⁻     is converted to 

nitrogen gas in a saturated layer or IWSZ.  Denitrification is a microbial respiratory process 

where nitrogen oxides are converted to nitrogen gas in the absence of oxygen (Rittman and 

McCarty, 2001).  Specific enzymes regulate denitrification through a series of four sequential 

steps and are shown in Philippot et al. (2007).  Numerous genera of denitrifying microorganisms, 

as well as some archeae and fungi, have been identified and include: Firmicutes, Actinomycetes, 

Bacteriodes, Aquifaceae, Proteobacteria Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria and Epsilonproteobacteria (Philippot et al., 2007).  Denitrification can be 

viewed as a communal process since many denitrifying microorganisms do not produce all of the 

enzymes required to complete denitrification (Zumft, 1997). 

 

There are two other biological nitrogen oxide removal processes that should not be 

confused with denitrification.  These processes are dissimilatory nitrate reduction (DRNA) and 

anaerobic ammonia oxidation (ANAMMOX) (Vaccari et al., 2006).  DRNA is a process where 



www.manaraa.com

16 
 

NO3⁻     is reduced to ammonia under anoxic conditions with high organic carbon to electron 

acceptor ratios (Tiedje et al., 1982).  ANAMMOX is a process where ammonia serves as an 

electron donor, nitrite serves as an electron acceptor and the product of the reaction is nitrogen 

gas.  DRNA and denitrification use the same genes (Nap and Nar) to reduce NO3⁻     to NO2
⎺     

(Wallenstein et al., 2006); however, DRNA does not use nitrite reductase genes (nirK and nirS).  

Previous studies have not evaluated the presence of ANAMMOX activity in bioretention 

systems; however, Zhu et al. (2013) studied ANAMMOX activity in riparian zones and observed 

that ANAMMOX contributed between 11 and 35% of the total of nitrogen gas production. 

 

Research investigating the expression of denitrifying genes in the IWSZ of bioretention 

systems has yet to be performed.  However, Chen et al. (2013) quantified nitrifying and 

denitrifying genes in the sand (nitrifying) and mulch layer of bioretention systems and observed 

that the quantity of denitrifying genes decreased as a function of media depth.  The controlling 

factor was possibly the decrease in available dissolved organic carbon with depth.  Warnecke et 

al. (2011) investigated denitrifying communities in denitrification beds, which are similar to 

IWSZs, and indicated that microbial denitrifcation (instead of DRNA or ANNAMOX) was the 

primary NO3⁻     removal mechanism.  The authors observed differing denitrifying gene quantities 

corresponding to the use of varying solid organic substrates in the denitrification bed.    

 

2.5 Bioavailability of Lignocellulosic Media 

Denitrification is a process that requires the presence of an electron donor such as a 

soluble bioavailable organic substrate or elemental sulfur.  A general denitrification 
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stoichiometric reaction that uses soluble organic carbon is shown below (Rittman and McCarty, 

2001).   

            
                                                (2.1) 

Wastewater denitrification systems often utilize soluble organic carbon sources, which include 

methanol, acetate and glycerol (Rittman and McCarty, 2001).  However, the organic carbon can 

be in the form of a solid substrate.  The use of solid substrates can be advantageous for two 

reasons: (1) they can act as biofilm carriers; and (2) they release bioavailable organic carbon to 

the biofilm at a relatively constant rate (Chu and Wang, 2013).  Solid organic carbon materials 

with their corresponding denitrification performance from various denitrifying bioreactor and 

modified bioretention studies can be found in Gibert et al. (2010). 

 

Denitrification with solid substrates requires an additional step to solubilize the solid 

substrate through a process called hydrolysis (Chu and Wang, 2013).  Hydrolysis occurs when 

bacteria excrete extracellular enzymes that break down solid substrates into molecules that are 

small enough to pass through the bacteria’s cell wall (Rittman and McCarty, 2001).  Organic 

solid substrates can be manufactured or obtained from nature.  Manufactured solid substrates can 

be useful to ensure a relatively constant effluent water quality and decrease unwanted residuals 

or by-products from substrate hydrolysis.  In addition, research identifying biochemical 

processes that occur during hydrolysis may be easier to conduct with manufactured compared to 

natural solid substrates (Shen et al., 2013).  Natural substrates are more economical, but have the 

potential to create effluent water quality issues, such as carry-over of dissolved organic carbon 

into the effluent, color changes and high ammonia concentrations (Shen et al., 2013). 
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Prior studies investigating denitrification with various manufactured solid substrates 

suggests that certain species of bacteria are capable of thriving on specific types of solid 

substrates and environments.  Mergaert et al. (2001) observed that Pseudomonas was more 

prevalent under aerobic conditions, while Acidovorax facilis and strains similar to 

Brevundimonas dominated under anoxic conditions with PHB as the biofilm carrier and sole 

carbon source.  Shen et al. (2013) observed that approximately 53% of the biofilm consisted of 

Diaphorobacter and Acidovorax when starch/polycaprolactone was the carbon source.    

Additional studies by Kobayashi et al. (1999) and Zhang (2010) showed that Diaphorobacter 

and Acidovorax are also capable of depolymerizing other solid organic substrates. 

 

Natural solid substrates are more complex than manufactured substrates.  Natural organic 

solid substrates include wood, compost, leaves and native soil (Gibert et al., 2008).  Wood is 

most commonly used for passive denitrification systems, which include denitrification beds and 

IWSZs in modified bioretention systems (FAWB, 2008; Schipper et al., 2010).  Wood is 

primarily composed lignocellulose, which consists of three polymers, cellulose, hemi-cellulose 

and lignin (Perez et al., 2002).  These polymers have different structural characteristics.  

Cellulose is a glucose polymer with α-1,4-linkages, hemicellulose is a heteropolysaccharide 

polymer and lignin is an amorphous heteropolymer (Malherbe et al., 2002; Perez et al., 2002).  

The general composition of cellulose, hemi-cellulose and lignin for lignocellulosic materials are 

different (Betts et al., 1991).  The rate of hydrolysis from hemi-cellulose is known to occur 

fastest, followed by cellulose and then lignin (Malherbe and Cloete, 2002).  In addition, the 

biodegradation of these polymers requires different enzymes (Rittman and McCarty, 2001). 
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Lignocellulose hydrolysis has been identified as the rate-limiting step for the production 

of biofuels and paper and the degradation of wastes from silage (Malherbe and Cloete, 2002).  

As a result, a large number of studies have focused on understanding lignocellulosic material 

hydrolysis.  However, much of this research has focused on aerobic rather than anaerobic 

processes, and the basic mechanisms for hydrolysis are different in anaerobic and aerobic 

environments (Leschine et al., 1995; Tomme et al., 1995).  Generally, aerobic environments 

allow hydrolysis rates to increase, while anaerobic environments allow bacteria and fungi to 

utilize hydrolyzed material more efficiently (Malherbe and Cloete, 2002).   

 

Cellulose hydrolysis is the most studied lignocellulosic polymer for use in mesophilic 

anaerobic environments.  Enzymes that depolymerize cellulose in anaerobic environments are 

organized in multi-enzymatic complexes called cellulosomes (Desvaux, 2006).  Enzymes found 

in cellulosomes are known to include endoglucanase, cellobiohydrolase and xylanase (Leschine, 

1995).  The products of cellulose depolymerization include cellobiose, cellodextrines and 

glucose which can be metabolized in biofilms (Leschine, 1995; Desvaux, 2006). 

 

Anaerobic bacteria and fungi are known to produce extracellular enzymes that hydrolyze 

cellulose and include Bacteroides cellulosolvens, Cellulomonas spp., Clostridium cellulolyticum, 

Clostridium cellulovorans, Clostridium papyrosolvens, Fibrobacter succinogenes, 

Ruminococcus albus and Neocallimastix frontalis (a rumen fungus) (Leschine, 1995).  These 

organisms exhibit several other capabilities: Clostriduium cellulovorans is capable of utilizing 

other carbon sources found in wood, such as xylan and pectin (Kosugi et al., 2001); the 

cellulosomes of Clostridium cellulolyticum are known to facilitate bacterial adhesion onto solid 
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substrates (Desvaux, 2006); in nitrogen-limited environments, Cellulomonas spp. can utilize 

ammonium from solid cellulosic substrates for synthesis (Young et al., 2012); and some 

cellulolytic bacteria, such as F. succinogenes, do not produce cellulosomes (Schwartz, 2001). 

 

 

Figure 2.1. A layer profile schematic of a conventional bioretention system. 
 
 

 

Figure 2.2. Various bioretention system configurations: (a) conventional bioretention; (b) 

conventional bioretention with an under-drain; (c) modified bioretention. 
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Chapter 3: 

Biological Processes in Internal Water Storage Zones of Bioretention Systems
1 

 

3.1 Introduction 

 Urban stormwater runoff is one of the primary sources of impairment to surface waters in 

the United States (USEPA, 2000).  Urban runoff contains nutrients, such as nitrogen and 

phosphorus, which promote eutrophication.  Eutrophication is known to contribute to toxic algal 

blooms, reduced fish yields and biodiversity, development of hypoxic zones, decreased property 

values and reduced recreational use of surface waters (Smith, 2003).  Low Impact Development 

technologies, such as bioretention systems, can be used to reduce eutrophication by controlling 

nitrogen loadings from urban areas (Ahiablame et al., 2012).  A bioretention system is a 

stormwater treatment system that is capable of increasing infiltration, reducing runoff rates and 

removing pollutants (Dietz, 2007).  

 

 A number of nitrogen transformation processes occur in bioretention systems including: 

nitrification, denitrification, immobilization, mineralization, plant uptake and filtration (Lucas 

and Greenway, 2011).   Previous studies have reported that conventional bioretention systems 

achieve a median of 8% nitrate (NO3⁻   ) removal (see review by Collins et al., 2010).  This has led 

to the development of a modified bioretention system, which includes an internal water storage  

 

1 Note:  Portions of this chapter are being prepared for submission to the Journal of “Environmental Engineering Science”.  The co-authors of the 

manuscript included Thomas Lynn, Daniel Yeh and Sarina Ergas.  Research questions and experimental design were developed by Thomas Lynn 
and Sarina Ergas.  Thomas Lynn performed laboratory work.  Thomas Lynn and Sarina Ergas drafted the paper.  Data interpretation and 

comments were provided by all authors. 
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zone (IWSZ) containing an electron donor to promote denitrification (Kim et al., 2003).  Factors 

that have been reported to affect NO3⁻     removal in IWSZs include: influent NO3⁻    concentration, 

oxidation reduction potential (i.e., aerobic/anoxic conditions), detention time and electron donor 

availability (Kim et al., 2003; Smith, 2008; and Ergas et al., 2010).  Other factors that may be 

important include biofilm acclimation, antecedent dry conditions (ADC), IWSZ depth, electron 

donor hydrolysis rate and transport of influent dissolved organic carbon (DOC), decaying 

vegetation and/or plant exudates from the surface to the IWSZ (Kim et al., 2003; Chun et al., 

2009; Zhang et al., 2011; Chu and Wang, 2013). 

 

Bioretention systems are operated on an intermittent basis where the number of days 

between storm events is referred to as the ADCs.  Prior peer-reviewed studies investigating the 

effect of ADCs on NO3⁻     removal in the IWSZ is limited.   Kim et al. (2003) studied ADCs of 7 

and 37 days and observed low initial effluent NO3⁻    concentrations.  Effluent NO3⁻    concentrations 

gradually increased, but were lower than influent NO3⁻    concentrations.  Cho et al. (2011) 

observed that NO3⁻     leaching occurs as a result of increased ADCs; however, their study evaluated 

conventional bioretention systems with under-drains, rather than modified bioretention systems.  

Zinger et al. (2007b) compared NO3⁻     removal performance of biofilters with and without a 

submerged zone at ADCs between one and eight weeks.  After an ADC of two weeks, NO3⁻     

removal in biofilters with a submerged zone was greater than in biofilters without a submerged 

zone.     

 

 In order to promote denitrification in the IWSZ, a sufficient amount of bioavailable 

organic carbon needs to be present.  This organic carbon may come from the influent 
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stormwater, plant exudates, decaying plant roots and/or solid carbon-containing material added 

to the IWSZ.  Guidance on providing a solid carbon-containing material to the IWSZ is usually 

given in terms of a volume percentage of material; for example, specifying that five percent of 

the IWSZ media should be comprised of hardwood chips (FAWB, 2008).  However, solid 

sources of organic carbon must first be hydrolyzed into soluble compounds before bacteria can 

utilize the material as an electron-donor (see review by Desvaux, 2006).  During ADCs, the 

hydrolysis process could increase bio-available carbon concentrations and affect NO3⁻     removal 

efficiencies.  Studies investigating organic carbon hydrolysis in IWSZs of bioretention systems 

have not been conducted previously. 

 

After years to decades of operation, bio-available organic carbon in the IWSZ media will 

be depleted.  To maintain high NO3⁻     removal rates, IWSZ media will then need to be replaced.  

However, the lifespan of biodegradable additives remains unknown (Grebel et al., 2013), and is 

important for understanding how bioretention systems should be designed (Laurenson et al., 

2013).  Knowledge of hydrolysis rates in IWSZs can be used to develop conservative design 

guidelines and estimate the longevity of solid organic carbon sources.  Moorman et al. (2010) 

evaluated carbon degradation in denitrifying bioreactors, which are similar to IWSZs, and 

observed high organic carbon degradation in unsaturated compared to saturated environments.  

This suggests that hydrolysis rates are faster in aerobic compared to anoxic environments (see 

review by Malherbe and Cloete, 2002). 

 

The overall goal of this research was to investigate the dynamic performance of IWSZs in 

microcosms and bench-scale bioretention systems.   The specific objectives of this study were to 
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estimate the longevity of eucalyptus wood chips as carbon substrates in IWSZs and to investigate 

NO3⁻     removal performance under the following conditions: 1) unacclimated and acclimated 

media; 2) aerobic and anoxic environments; 3) varying ADCs; 4) varying influent NO3⁻    

concentrations; and 5) varying hydraulic loading rates.  Although field bioretention systems 

include vegetation, a mulch layer, a sand layer and an IWSZ layer, this study focused solely on 

processes that occur in the IWSZ layer in the absence of removal mechanisms influenced by 

surface vegetation. 

 

3.2 Materials and Methods 

3.2.1 Materials 

The source water used for this study was local stormwater runoff from a pond at the 

Botanical Gardens at the University of South Florida, Tampa campus.  Stormwater was spiked 

with KNO3 to achieve a feed NO3⁻   -N concentration above 2 mg/L to mimic nitrified stormwater 

runoff (Schueler, 2003).  Influent characteristics for each of the studies that were conducted can 

be found in Tables 3.2 through 3.4 of the results section.   For all acclimated studies, 

microoganisms present in the source water was the inoculant. All studies were performed in the 

laboratory at approximately 22°C.  The media types in the microcosm studies consisted of >1 

mm sand (Seffner Rock and Gravel, Tampa, FL), 0.6 to 1.3 cm pea gravel (Seffner Rock and 

Gravel, Tampa, FL), 1.3 to 2.5 cm eucalyptus wood chips (Sarasota County, Sarasota, FL), 2:1 

(vol/vol) mixture of sand and eucalyptus wood chips and a 2:1 (vol/vol) mixture of gravel and 

eucalyptus wood chips.  The selected ratio for the media mixtures was used to reduce buoyancy 

issues.  Eucalyptus is a hardwood and was chosen over other organic carbon media because it is 
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locally available and was expected to have a greater longevity than softwood media (Yang et al., 

2007).  

 

3.2.2 Microcosm Study  

The microcosm study was used to investigate the NO3⁻     removal performance from un-

acclimated and acclimated media in aerobic and anoxic environments.  In this study, biofilm 

acclimation refers to daily addition of influent stormwater over a one month period to seed the 

media with indigenous bacteria. Microcosm studies were performed in two phases.  During 

Phase 1, the following five media types were tested under acclimated and unacclimated 

conditions: sand, gravel, wood, sand-wood and gravel-wood.  Unacclimated microcosm tests 

were performed on the first day that the source water was added to the media.  During Phase 2, 

the gravel-wood medium was tested under both anoxic and aerobic conditions.  In addition, a 

gravel-wood microcosm, with the media initially dried at 105°C for four hours, was used as an 

inactivated control.  Microcosms were set up in one liter glass bottles.  The volume of media 

mixture placed into each microcosm was 750 mL.  During Phase 2, mean dissolved oxygen (DO) 

concentrations in the source water for the aerobic and anoxic microcosms were 5.2 and 1.0 mg/L, 

respectively.  The microcosms were sealed and placed in the dark.  Samples were collected every 

hour and analyzed as described below.  Incubation periods for all acclimated and unacclimated 

microcosms were 6 and 12 hours, respectively.  All experiments were carried out in triplicate 

with the exception of the single unacclimated microcosms.    
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3.2.3 Column Study  

A schematic of the laboratory setup for the column study is shown in Figure 3.1.  

Experiments were carried out in a completely submerged 12.7 cm ID acrylic column to mimic an 

IWSZ with a depth of 45 cm.  The gravel-wood media (bulk porosity = 0.42) was supported by a 

7.6 cm under-drain layer of pea gravel to prevent clogging.  A comparison of the NO3⁻    removal 

performance from the column used in this study with two other columns with different depths 

(see Chapter 4).  Stormwater was pumped from the reservoir using a Cole Parmer Masterflex L/S 

peristaltic pump (Thermo Fisher Scientific, Waltham, Massachusetts).        

 

Storm events were set up to simulate a storm that discharges runoff into the bioretention 

ponding area as a slug load, which causes the hydraulic loading rate to decrease over time as the 

pond area drains (for approximately 36 hours).  To achieve this, the hydraulic loading rates (or 

detention times) were varied over time by manually adjusting the pump flow valves.  Note that 

detention time versus storm duration values are shown in the results section.  Eleven storm 

events were investigated in the column study, as shown in Table 3.1.  ADCs are defined as the 

time period between the end of a previous storm event to the beginning of the next storm event.  

Storm Events (SE) #1, 2, 3, 4, 5 and 9 were operated under the same hydraulic loading 

conditions and were used to investigate the effect of varying ADCs.  Storm Event #4 (ADC of 8 

days and hydraulic loading rate of 8.3 cm/hr) was also used as a base case to compare SE #6 and 

SE #7, which were operated with a higher influent NO3⁻    concentration (4 mg/L NO3⁻   -N) and 

higher average hydraulic loading rates (32.2 cm/hr), respectively.  Storm Events #8, 10 and 11 

were operated at constant detention times of one, two and three hours, respectively.   
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3.2.4 Analytical Methods 

Standard Methods (Standard Methods, 2012) were used to measure dissolved organic 

carbon (DOC) (Method 5310B), total nitrogen (TN) (4500-N), total suspended solids (TSS) 

(2540D) and volatile suspended solids (VSS) (2540D).  Anion (NO3⁻   , nitrite [NO2
⎺   ], phosphate 

[PO4
3
 ⁻], sulfate [SO4

2
 ⁻]) and ammonium (NH4

+
   ) concentrations were measured by ion 

chromatography (USEPA, 1997), using an 850 Professional Ion Cromatograph (Metrohm AG, 

Herisau, Switzerland).  A Shimadzu TOC-V CSH Total Organic Carbon / Total Nitrogen 

Analyzer (Shimadzu Scientific Instruments, Columbia, Maryland) was used to measure non-

purgeable organic carbon (NPOC) and TN.  NPOC concentrations were used to estimate DOC 

concentrations.  TKN concentrations were calculated by difference TN – [NO3⁻   -N + NO2
⎺   -N].  An 

Orion 5 Star (Thermo Scientific Inc., Beverly, Massachusetts) meter with a calibrated probe was 

used to measure pH and DO.  Method detection limits for DOC, TN, NO3⁻   -N, NO2
⎺   -N , PO4

3
 ⁻-P, 

SO4
2
 ⁻-S, NH4

+
   -N were 0.11, 0.03, 0.01, 0.04, 0.02, 0.01 and 0.07 mg/L, respectively. 

 

3.2.5 Statistical Analysis   

Differences in NO3⁻    removal performance during the microcosm studies were evaluated 

using two-way analysis of variance (ANOVA).  It was assumed that the observed NO3⁻    removal 

was due to denitrification and that other NO3⁻    removal mechanisms (such as adsorption or 

biosynthesis) were negligible; however, no confirmation studies, such as studies using isotope 

tracers, were carried out.  Denitrification rate constants for all media types and environmental 

conditions were estimated by minimizing the sum of squares residuals between the data and the 

model and then using linear regression to calculate the coefficient of determination (r
2
).  During 

the column study, flow weighted influent and effluent concentrations were calculated for each 
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storm event and were used to calculate the mean mass removal efficiencies.  Differences in TN 

removal performance between storm event types were evaluated using two-way ANOVA.  Initial 

effluent sample data (water initially retained in the IWSZ before the storm event) and effluent 

sampling data where NO3⁻    removal efficiency was observed to exceed 95% were excluded. 

 

3.2.6 Data Analysis 

Denitrification kinetics were assumed to follow a first-order reaction rate with DO 

inhibition (Wild et al., 1995): 

                                                                      
   

       
                                                        (3.1)  

where k1 = first-order denitrification rate constant that was calculated from the data obtained 

from the anoxic or aerobic microcosms (hr
-1

); k = first-order denitrification rate constant (hr
-1

); 

KO2 = oxygen inhibition coefficient (mg/L); and SO2 = initial DO concentration (mg/L).  Values 

of k and KO2 were calibrated using data from the aerobic and anoxic microcosms with the wood-

gravel media.   

 

 The IWSZ longevity estimate was calculated by extrapolating data from the gravel-wood 

anoxic and aerobic microcosms in Phase 2.  Based on the column study results, biological sulfate 

reduction was assumed to occur.  In addition, the rate at which DOC dissolves into the 

microcosm pore waters was assumed to be equal to the hydrolysis rate.  The following 

parameters that affect DOC concentrations: DOC hydrolysis rate (DOCh (mg/L-hr)), mass of 

DOC consumed per mass of NO3
⎺  -N consumed (𝛾C/N (g/g)), mass of DOC consumed per mass of 

oxygen consumed (𝛾C/O (g/g)) and mass of DOC consumed per mass of SO4
2
 ⁻-S consumed (𝛾C/S 

(g/g)) were estimated according to the DOC mass balance equation shown in Equation 3.2.   
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where DOCI and DOCE are the initial and final DOC concentrations (mg/L);  N,  O and  S are 

the differences in the initial and final NO3⁻   -N, DO and SO4
2
 ⁻-S concentrations (mg/L), 

respectively;   is the incubation time (6 hr); and fe,O, fe,N, and fe,S are factors that account for the 

stoichiometric relationship between DOC and DO, NO3⁻   -N and SO4
2
 ⁻-S as electron acceptors, 

respectively.  Assumed values of fe,O, fe,N, and fe,S were 0.4, 0.5 and 0.92, respectively, and were 

based on typical values observed in wastewater treatment systems (Rittman and McCarty, 2001) 

because values in stormwater systems are unknown.  Based on stoichiometric relationships,  N 

and  S are equal to 2.86 O and 2.00 O, respectively (see Section 4.9 in USEPA, 2010).  These 

ratios were inserted into Equation 3.2 and the terms 𝛾C/N and 𝛾C/S were replaced with 𝛾C/O, as 

shown in Equation 3.3. 
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3.3 Results 

3.3.1 Microcosm Study 

Results from the unacclimated microcosms are shown in Table 3.2.  Increased 

concentrations of Org-N, DOC, PO4
3
 ⁻ and SO4

2
 ⁻ were observed for all media types, with the 

highest final concentrations observed in the wood-containing media.  Increased concentrations of 

NO2
⎺    and NH4

+
    and a decrease in pH were also observed in the wood-containing media.  NO3⁻    

removal was observed in wood-containing microcosms after six to twelve hours. 
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Results from the microcosms after acclimation are shown in Table 3.2.  Six hours after 

stormwater addition, NO3⁻    removal efficiencies of 1, -4, 100, 84 and 100% were observed for the 

sand, gravel, wood, sand-wood and gravel-wood media, respectively.  NO3⁻    removal performance 

from the gravel-wood media was significantly higher than the sand-wood media; and the wood 

only media was significantly higher than the gravel-wood media (p-value<0.05).  First-order 

denitrification rate constants (hr
-1

) of 0.75, 0.27 and 0.57 were calibrated for wood, sand-wood 

and gravel-wood media, respectively.  Final NH4
+
    concentrations were below the detection limit 

for all media types. 

 

A comparison of the water quality characteristics of gravel-wood microcosms under 

initial aerobic, anoxic and inactivated conditions are shown in Table 3.3 and Figure 3.2.  Within 

six hours of stormwater addition, NO3⁻    removal efficiencies of 97 and 80% were observed for the 

anoxic and aerobic microcosms, respectively.  NO3⁻    removal was significantly lower in aerobic 

compared to anoxic microcosms (p-value<0.05); however, both microcosms exhibited first-order 

kinetics (r
2
 = 0.98 and 0.94, respectively).  Mean initial DO concentrations of 5.2 mg/L in the 

aerobic microcosms were reduced to 1.6 and 0.1 mg/L within one and six hours, respectively.  

Values for k and KO2 from Equation 3.1 were calculated as 0.54 hr
-1

 and 2.18 mg/L, respectively. 

 

Leaching of NH4
+
    was not observed under either condition.  Final DOC concentrations 

were not significantly different in the anoxic (4.9 mg/L) compared to aerobic (4.6 mg/L) 

microcosms (p-value=0.05).  Low (3%) and no (0%) removal of SO4

2
 ⎺ were observed in the 

anoxic and aerobic microcosms, respectively.  Mean TSS and VSS removal efficiencies of -

1,048 and -1,737% were observed in the anoxic microcosms, respectively; while -587 and -492% 
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were observed in the aerobic microcosms, respectively.  Relatively high final concentrations of 

NH4
+
   , Org-N, TOC, PO4

3
 ⁻ and SO4

2
 ⁻, were observed in the inactivated control microcosms. 

 

Data from the gravel-wood media anoxic and aerobic microcosms were used to estimate 

the longevity of eucalyptus in IWSZs.  Substituting data from the anoxic microcosm into 

Equation 3.3 yields: 
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Substituting data from the aerobic microcosm into Equation 3.3 yields: 
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(3.5) 

 

Equations 3.4 and 3.5 were solved simultaneously to find the following values: 𝛾C/O 

(0.043 g/g), 𝛾C/N (0.123 g/g), 𝛾C/S (0.086 g/g) and DOCd (0.28 mg/L-hr).  Assuming the 

following for eucalyptus: an empirical formula of CH1.864O0.515N0.089S0.003 in which 19.18 (wt%) 

of the material is fixed carbon (Sulaiman and Lee, 2012), the fixed carbon did not hydrolyze and 

a density of 400 g/L (determined experimentally), the estimated longevity of the media is 34 

years.  In calculating this value, it was assumed that saturation conditions were maintained in the 

IWSZ and the hydrolysis rate was constant at 0.28 mg/L-hr.     
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3.3.2 Column Study  

Overall water quality results from the column study are shown in Table 3.4.  Average 

mass removal efficiencies for NO3⁻   , TKN and TN were 85, -43 and 66%, respectively.  Influent 

and effluent NH4
+
    concentrations were consistently below the detection limit of 0.07 mg/L.  

Removal of PO4
3
 ⁻, SO4

2
 ⁻, TSS and VSS, decrease in pH and production of DOC was also 

observed. 

 

Mean water quality results for SE #’s 1-5 and 9 are shown in Figure 3.3.  After the initial 

pore water volume was discharged, mean effluent NO3⁻   -N concentrations decreased from 0.39 to 

0.02 mg/L when the detention time increased from one to nine hours (Figure 3.3a).  However, 

the mean effluent DOC concentration decreased from 58.8 to 5.2 mg/L as the detention time 

increased to four hours and then increased to 6.1 mg/L during the nine hour detention time 

(Figure 3.3b). 

 

Water quality results for SE #4 (8 day ADC) and SE #5 (0 day ADC) are shown in Table 

3.4 and Figure 3.4.  NO3⁻    removal efficiencies for the initial effluent samples taken from these 

storm events were greater than 98%.  Overall NO3⁻    mass removal efficiencies for SE #4 and SE 

#5 were 97 and 86%, respectively, as shown in Table 3.4.  For the one hour detention time 

effluent samples (2
nd

 sample taken), the NO3⁻    removal efficiencies for SE #4 and SE #5 were 77 

and 52%, respectively.  The weighted mean effluent DOC concentration from SE #5 (11.5 mg/L) 

was greater than SE #4 (5.3 mg/L).  The influent DOC concentration for both storm events was 

4.9 mg/L.  In addition, weighted mean effluent DOC concentrations from SE #2, SE #3 and SE 

#9 were all greater than SE #5.  
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Nitrogen speciation data that compares the effect of varying influent NO3⁻   -N 

concentrations from SE #4 (2 mg/L NO3⁻   -N) and SE #6 (4 mg/L NO3⁻   -N) are shown in Table 3.4 

(additional data not shown).  TN removal efficiencies were significantly higher in SE #4 than SE 

#6 (p-value<0.01); however, the difference in the overall TN mass removal efficiency was only 

3%.  The highest effluent NO2
⎺   -N concentrations (0.36 to 0.44 mg/L) were observed from the 

two, three and four hour detention time samples taken during SE #6, while NO2
⎺   -N concentrations 

from all of the other samples from SE #4 and SE #6 were below 0.12 mg/L.  Weighted mean 

effluent TKN concentrations for SE #4 and SE #6 were greater than influent TKN concentrations 

by 0.06 and 0.14 mg/L, respectively. 

 

Water quality data comparing low (SE #4) with high (SE #7) flow rate storm events are 

shown in Table 3.4 and Figure 3.5.  As expected, the TN removal efficiency was significantly 

higher in SE #4 than SE #7 (p-value<0.01).   TKN and TSS removal efficiencies were also 

higher in SE #4 compared with SE #7. 

 

Results from the constant flow storm events (SE #8, SE #9 and SE #11) are shown in 

Table 3.4 and Figure 3.6.  Steady-state effluent NO3⁻    concentrations were not observed for any of 

these storm events even after nine IWSZ pore volumes were discharged.  In SE #8, NO3⁻    removal 

efficiencies from samples taken after 1.25, 5 and 9 pore volumes were discharged were 90, 43 

and 31%, respectively.  In SE #11, NO3⁻    removal efficiencies slowly declined from 85 to 78% 

with respect to the samples taken during the 8
th

 and 28
th

 pore volume discharged, respectively. 
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3.4 Discussion 

3.4.1 Microcosm Study 

The unacclimated microcosm results (Table 3.2) provide insight into expected IWSZ 

performance during start-up.  Cameron and Schipper (2012) evaluated unacclimated media and 

observed similar results with respect to increases in NH4
+
   -N and Org-N concentrations and 

decrease in pH for carbon-containing media; however, increases in DOC, PO4
3
 ⁻-P and SO4

2
 ⁻-S 

were not reported.  Increases in effluent nutrient concentrations during start-up periods are a 

cause for concern, since typical nutrient concentrations in stormwater runoff are relatively low.  

However, NO3⁻    removal appeared to commence within twelve hours of stormwater addition, most 

likely due to the presence of denitrifying bacteria in the wood chips.  This provides confidence 

that IWSZs will begin to denitrify even without inoculation with bacteria (such as biomass from 

a wastewater treatment facility).  The carbon-containing media results can also be used to 

evaluate the effluent water quality characteristics from the mulch layer that is typically included 

in bioretention systems.  The high final concentrations of NH4
+
   , Org-N and PO4

3
 ⁻ that were 

observed in the carbon-containing media microcosms provide evidence that the mulch layer 

negatively impacts the water quality performance of bioretention systems. 

 

 The acclimated microcosm results (Table 3.2) provide data on the maximum expected 

denitrification kinetics from the IWSZ media after bioretention systems have been in the field for 

a number of storm events.  The results from the sand and gravel medium indicated that NO3⁻    

removal did not occur in absence of a carbon source.  This is in contrast with the results observed 

by Gibert el al. (2008); however, their study was conducted over several days with influent DOC 

concentrations greater than 30 mg/L.  Differences in NO3⁻    removal rates in sand-wood and gravel-
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wood media provide evidence that the physical characteristics (grain size, porosity, surface area, 

etc.) of the media play a role in IWSZ denitrification rates.  Due to its higher porosity, a higher 

total mass of NO3⁻    was added to the gravel-wood medium than the sand-wood medium during the 

acclimation period.  This may have increased the denitrifying bacteria population and improved 

NO3⁻    removal in the gravel-wood medium.  However, this phenomenon would not be expected to 

occur in nutrient-rich waters, such as wastewater because the sand-wood medium would provide 

more surface area for biofilm attachment, which utilizes NO3⁻    at a higher rate. 

 

  Although the highest NO3⁻    removal rates were observed with the wood only medium, the 

gravel-wood media was selected for further evaluation in microcosm and column studies for the 

following reasons: (1) a relatively high denitrification rate constant in comparison to the sand-

wood media; (2) the structural stability of the gravel in the gravel-wood media, as compared to 

the wood only media, mitigates IWSZ compression that could potentially decrease IWSZ 

hydraulic conductivity over time; (3) the permeability of the gravel-wood media is greater than 

sand-wood media; and (4) the mean effluent DOC concentration of gravel-wood media (4.1 

mg/L) was less than wood media (6.8 mg/L). 

 

The results from the anoxic and aerobic microcosms are useful for comparing how 

influent DO concentrations affect NO3⁻    removal rates.  In this study, higher DO concentrations 

decreased NO3⁻    removal rates.  Varying results have been obtained in previous studies 

investigating the effect of DO on NO3⁻    removal rates in IWSZs.  Smith (2008) evaluated effluent 

concentrations of NO3⁻    and DO at varying flow rates and observed that complete DO removal was 

required before NO3⁻    was completely removed.  However, Clark and Pitt (2009) investigated the 
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effect of aerobic and anoxic microcosms with different medium types (compost, sand, peat and 

granular activated carbon) and observed NH4
+
    release and negligible NO3⁻    removal in anoxic 

microcosms, while NO3⁻    production was observed in aerobic microcosms.  The findings from 

Clark and Pitt (2008) were similar to the observations in unacclimated and inactivated 

microcosms in this study.  DO inhibition has received more attention in wastewater compared to 

stormwater treatment.  For wastewater, KO2 values between 0.1 and 0.2 mg/L have been reported 

in the literature (Barker and Dold, 1997), and are lower than the results from this study.  The 

anoxic and aerobic results from this study provide evidence that DO concentrations limit NO3⁻    

removal rates to a lower degree than in wastewater treatment systems. 

 

 The microcosm study results show that microbial communities were capable of utilizing 

the DOC released from the eucalyptus wood chips as an electron donor with different electron 

acceptors.  DO is utilized preferentially, NO3⁻     is consumed when DO concentrations are reduced 

below the inhibitory concentration and finally SO4
2
 ⁻ is utilized at low oxidation reduction 

potential.  Note that oxidation reduction potential or production of SO4
2
 ⁻ reduction products was 

not measured.   

 

3.4.2 IWSZ Longevity 

Internal water storage zone longevity may depend on whether wood-containing media is 

temporarily or permanently saturated.  The hydrolysis process is different in aerobic (un-

saturated) compared to anaerobic or anoxic (saturated) environments.  Aerobic hydrolysis 

produces more energy but intermediate products can be lost through the process (Malherbe and 

Cloete, 2002).  Anaerobic hydrolysis is more efficient because membrane-bound enzyme 
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complexes form a barrier around solid substrates (e.g. cellulose), which prevents the loss of 

intermediate products (Malherbe and Cloete, 2002).  This could explain why high final TKN,  

PO4
3
 ⁻ and DOC concentrations were only observed in the un-acclimated and inactivated control 

microcosms, since they both were exposed to aerobic conditions before the experiment began.  In 

addition, Rovira and Vallejo (2002) evaluated eucalyptus degradation in unsaturated soil and 

observed that 45 to 70% of the organic carbon was degraded within two years.  Therefore, it is 

recommended that IWSZs should be designed to maintain saturated conditions to increase 

longevity and reduce intermediate product leaching.    

 

Bioretention systems are passive systems that should be designed to blend into nature and 

operate for an extended period of time.  The estimated service life of IWSZs (~34 years) 

provides evidence that carbon will be available for at least a decade.  In the field, the actual 

service life could be reduced due to physical (e.g., erosion), chemical (e.g., changes in 

temperature) and biological (e.g., if more accurate values of fe,O, fe,N and fe,S for stormwater 

systems were used) processes that were not included in the estimate from this study.  For 

instance, if fe,O, fe,N and fe,S were approximately equal to one in electron acceptor deficient 

environments, then the longevity estimate would be 16 years.  However, IWSZ longevity may be 

longer if the hydrolysis rate decreases over time (Malherbe and Cloete, 2002), whereas, this 

study assumed a constant hydrolysis rate.  Robertson et al. (2008) observed decreased NO3⁻    

removal (20 to 50% the initial rate) in a denitrifying bioreactor containing 20% sawdust and 80% 

sand (w/w) that was in operation for 15 years.  Furthermore, Christianson et al. (2012) reviewed 

longevity estimates in denitrifying bioreactor studies that ranged between 9 and 72 years.  The 
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results from this and previous studies imply that permanently saturated carbon-containing IWSZs 

will supply bio-available carbon over multiple decades of operation. 

 

3.4.3 Column Study 

The column study results (Table 3.4) indicate that IWSZs can affect multiple water 

quality parameters.  Results of nitrogen speciation showed that IWSZs consistently removed NO3⁻     

over multiple storm events, and that a slight production in TKN (up to 0.2 mg/L) resulted in 

lower TN removal efficiencies.  The overall PO4
3
 ⁻ results (Table 3.4) provide evidence that 

IWSZs are capable of removing phosphorus.  Barrett et al. (2013) also observed PO4
3
 ⁻ removal 

and suggested that dissolved phosphorus may have precipitated as calcium hydroxyapatite during 

ADCs; however, the results from this study show PO4
3
 ⁻ production during the longest ADC storm 

event (SE #9).  Future research investigating the mechanism(s) for PO4
3
 ⁻ removal in IWSZs is 

recommended.  SO4
2
 ⁻ removal was observed during SE #1 through SE #10, possibly due to 

biological SO4
2
 ⁻ reduction.  Elgood et al. (2010) studied NO3⁻     removal in denitrifying bioreactors 

and observed similar results with respect SO4
2
 ⁻ reduction.  The column study results (Table 3.4) 

were similar to the microcosm study results (Table 3.3) with the exception of the lower TSS and 

VSS removal efficiencies in the microcosms, most likely because the TSS and VSS samples 

from the microcosms were quickly drained prior to analysis.  The overall TSS and VSS results 

from the column study indicate that gravel-containing IWSZs can be utilized for other 

stormwater treatment applications such as a ‘polishing’ filter for removing TSS in wet detention 

systems.  Problems with clogging were not observed during this study since the IWSZ inlet water 

elevation did not increase.  Hatt et al. (2007) evaluated the performance of a gravel filter and 



www.manaraa.com

39 
 

observed clogging throughout their study.  However, their study incorporated an underlain layer 

of fine sand, which may have induced system clogging. 

 

The column experiments were developed to mimic the temporal flows that occur in real 

bioretention systems, as shown in Figures 3.3-3.5.  During a storm event, runoff is conveyed to 

the bioretention ponding area, where the ponding elevation reaches its maximum height.  In this 

period, the IWSZ flow rate is high; hence, short detention times were utilized for the initial stage 

of this experiment.  After a storm event, runoff no longer enters the ponding area, while the 

ponding elevation decreases and conveys runoff through the IWSZ.  At this stage, water initially 

retained in the IWSZ is discharged and is followed by runoff from the storm event.  During this 

period, the flow rate decreases until the water elevation reaches the top elevation of the IWSZ.  

This experiment used pumps controlled by timers so there are step decreases in flow rate over 

each storm event rather than continuous decreases. 

 

Mean effluent DOC data (Figure 3.3b) is useful for understanding how DOC dynamics 

could affect the NO3⁻    removal performance of IWSZs.  High DOC concentrations that were 

observed during the initial period of the storm events could have increased NO3⁻    removal rates.  

NO3⁻    removal rates may have then decreased as excess DOC was flushed out of the system; 

however, the increase in detention time may have played a larger role by reducing effluent NO3⁻    

concentrations (Figure 3.3a).  When the detention time increased even further, NO3⁻    was almost 

completely removed and effluent DOC concentrations increased due to the greater hydrolysis 

rate compared to the DOC consumption rate.  Increased DOC concentrations in the IWSZ pore 

waters may then be available for next storm event, as the intermittent cycle continued.   
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Water quality data from SE #4 (8 day ADC) and SE #5 (0 day ADC) (Figure 3.4) are 

useful for comparing how varying ADCs affect IWSZ performance.  The initial low effluent NO3⁻    

concentration during SE #4 was expected because water leaving the reactor had been retained in 

the IWSZ during ADCs.  Kim et al. (2003) observed similar results and suggested that mixing of 

the influent and IWSZ initial pore water volume occurs over time, which causes the IWSZ NO3⁻     

removal efficiency to decrease.  This could explain why low NO3⁻     removal was observed in the 

one hour detention time sample for SE #5, since this storm event began immediately after SE #4.  

However, the difference in NO3⁻     removal efficiencies over the duration of SE #4 and SE #5 

indicates that higher initial DOC concentrations from SE #4 increased NO3⁻    removal.  In addition, 

effluent DOC results from SE #2, SE #3 and SE #9 (ADCs ≥ 4 days) are similar to SE #4 

compared to SE #5.  Warneke et al. (2011) also observed that higher bioavailable carbon in 

denitrification beds will yield greater NO3⁻     removal rates.  The results from this study provide 

evidence that the influent and water previously retained in the IWSZ simultaneously dilute 

influent NO3⁻     concentrations and flush out retained DOC over multiple IWSZ pore volumes, 

which decreases NO3⁻    removal efficiency over time.  After the initial IWSZ pore water and excess 

DOC have been flushed out of the reactor, detention time plays a more dominant role in NO3⁻    

removal. 

 

Nitrogen speciation removal efficiency data from SE #4 (Influent NO3⁻   -N = 2 mg/L) and 

SE #6 (4 mg/L) are useful for comparing how varying influent NO3⁻    concentrations affect IWSZ 

performance (Table 3.4).  A slight increase in effluent NO2
⎺     concentrations during SE #6 may 

have been due to partial denitrification at the higher influent NO3⁻     loading rate.  Storm Event #6 
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produced a higher percentage of TKN compared to SE #4; however, the actual TKN 

concentration produced was relatively low compared to influent NO3⁻   -N concentrations.  These 

results provide evidence that NO3⁻     is removed more efficiently during storm events with lower 

influent NO3⁻    concentration, but the difference in TN removal efficiency is relatively small.  This 

is important because seasonal fertilizer application rates can alter influent NO3⁻    concentrations 

(Vidon et al., 2009). 

 

The results from the low (SE #4) and high flow rate (SE #7) storm events show that an 

increase in IWSZ detention time increases NO3⁻     removal and plays a significant role in 

increasing TN removal efficiencies (Table 3.4; Figure 3.5), as previously observed in other 

studies (Kim et al., 2003; Smith, 2008; Ergas et al., 2010; Lucas and Greenway, 2011; Lee et al., 

2013).  In addition, increased TKN production observed during SE #7 suggests that biofilm is 

washed out at higher flow rates.  These results provide evidence that low hydraulic loading rates 

will reduce effluent NO3⁻     and TKN concentrations.  In addition, the TSS results revealed that 

lower hydraulic loading rates also improve TSS removal, which was expected. 

 

 The constant flow storm event (SE #8, SE #9 and SE #11) results provide a general 

framework for how multiple processes affect NO3⁻    removal in IWSZs, as shown in Table 3.4 and 

Figure 3.6.  As previously discussed, water mixing and DOC flushing will contribute to the 

decrease in NO3⁻     removal efficiency over time; however, these processes are only expected to 

occur during the initial IWSZ pore volumes discharged.  A phenomenon that could explain the 

longer term decrease in NO3⁻     removal efficiency is the effect of mass transfer of substrates into 

the biofilm.  When IWSZs are initially charged, a high substrate concentration gradient exists 
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between the IWSZ pore water and biofilm boundary layer.  During IWSZ operation, substrate 

concentration gradients decrease, thereby decreasing substrate mass transfer rates and reducing 

NO3⁻     removal rates over time.   

 

3.4.4 Implications for Full-Scale Bioretention System Design 

 Understanding where and how nitrogen species transformation processes occur is 

important in developing design strategies for bioretention systems.  The results from this study 

consistently show that NO3⁻     removal was greater than TN removal.  There are two reasons for 

this: (1) the IWSZ was saturated, which prevented TKN oxidation and (2) the saturated wood-

chip media in the IWSZ leached TKN.  In full-scale bioretention systems, nitrification in the 

sand layer will likely increase TKN oxidation and plant uptake or microbial processes in the 

rhizosphere will likely increase TN     removal.  Thus, higher TN removal efficiencies would 

likely occur if bioretention systems containing sand and plant layers were evaluated. 

 

Plant uptake is considered to be a dominant TN removal mechanism during bioretention 

operation if an efficient nitrification/denitrification process is unavailable (Payne et al., 2013).  

Reported plant uptake rates vary between 0.5 and 180 g TN/m
2
/yr, with the highest values 

representing nutrient-rich wetlands (Payne et al., 2013).  Davis et al. (2006) and Greenway and 

Lucas (2010) estimated bioretention plant uptake values of 75 and 65 g N/m
2
/yr, respectively.  

TN removal rates for the gravel and wood media evaluated in this study were between 600 and 

1,600 g TN/m
2
/yr.  Thus, inclusion of an IWSZ containing a gravel-wood media could increase 

TN removal rates and decrease the bioretention footprint required to remove TN. 
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The results from this study also provide insight on the potential impact that IWSZs have 

on downstream waters.  Due to oxygen uptake in the IWSZ, effluent DO is low.  In addition, 

excess DOC washed out of the IWSZ may be consumed by aerobic bacteria, preventing 

reaeration.  If IWSZs are designed significantly larger than what is needed to reduce NO3⁻    , then 

DO levels in downstream waters may decrease and impact aquatic ecosystems.  Because of this, 

understanding the characteristics of DOC sources (mulch, soil, plant decay and exudates, and 

IWSZ carbon-containing media) and sinks (adsorption, plant uptake and microbial 

decomposition) and their rates is vital in determining how IWSZ effluent could impact 

downstream surface waters. 

 

3.5 Conclusions 

Processes that control NO3⁻    removal in IWSZs of modified bioretention systems were 

investigated using mixtures of wood, sand and gravel media.  Based on the results from this 

study, the following conclusions were drawn: 

 Unacclimated media export TKN, DOC and PO4
3
 ⁻, but once media are acclimated they 

export only TKN and DOC to a smaller degree and remove NO3⁻    at higher rates.  These 

results also indicate that the mulch layer exports high amounts of TKN and PO4
3
 ⁻ and 

should not be included in bioretention system designs. 

 The gravel-wood media was selected for further evaluation due to good hydraulic 

properties and the observed increase in NO3⁻    removal rates and low DOC production 

compared to the sand-wood and wood media. 
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 NO3⁻     removal was positively correlated with antecedent dry conditions (ADCs) and 

detention time and negatively correlated with influent NO3⁻     concentration and storm 

duration. 

 Hydrolysis increased IWSZ pore water DOC concentrations during ADCs and improved 

NO3⁻    removal efficiency during IWSZ operation. 

 It was estimated that permanently saturated IWSZs will act as a carbon source to promote 

denitrification for approximately 34 years. 

 

Table 3.1. Storm event ADCs, durations and characteristics used for the column study. 

Storm Event ADC (days) Duration (hr) Notes 

1 0 37.5 Began one day after acclimation period 

2 16 37.5  

3 4 37.5  

4 8 37.5  

5 0 37.5 Began immediately after storm event #4 

6 8 37.5 Influent NO3-N ≈ 4 mg/L 

7 8 11.25 High flow rates 

8 8 9 Constant 1 hr detention time 

9 30 37.5  

10 N/A
a
 18 Constant 2 hr detention time 

11 N/A
a 

86.25 Constant 3 hr detention time 
a Not measured 
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Table 3.2. Results from the acclimated (top value) and unacclimated (bottom value) microcosm 

experiments during Phase 1.  All parameter values are in mg/L with the exception of pH; 

acclimated microcosm standard deviation values are shown in parenthesis; and BDL is below 

detection limit.
 

Parameter
 

Initial Wood Sand-Wood Gravel-Wood Sand Gravel 

NO3⁻   -N 1.94 (0.06) 

1.85 

BDL 

1.34 

0.30 (0.09) 

1.74 

BDL 

1.69 

1.94 (0.06) 

2.14 

2.04 (0.11) 

2.58 

NO2
⎺ -N BDL 

0.06 

BDL 

0.62 

BDL 

0.33 

BDL 

0.25 

BDL 

BDL 

BDL 

BDL 

NH4
+
   -N BDL 

BDL 

BDL 

14.83 

BDL 

4.37 

BDL 

11.26 

BDL 

BDL 

BDL 

BDL 

Org-N 0.2 (0.1) 

0.4 

0.3 (0.0) 

10.4 

0.3 (0.1) 

11.1 

0.3 (0.1) 

0.4 

0.4 (0.1) 

1.5 

0.2 (0.1) 

1.4 

TN 2.2 (0.1) 

2.4 

0.3 (0.0) 

27.2 

0.7 (0.1) 

17.6 

0.4 (0.0) 

13.6 

2.3 (0.2) 

3.7 

2.2 (0.1) 

4.0 

DOC 2.9 (0.2) 

3.5 

6.8 (1.2) 

372.3 

4.6 (1.0) 

142.9 

4.1 (0.5) 

123.1 

3.5 (0.6) 

13.4 

3.0 (0.3) 

14.3 

PO4
3
 ⁻-P 0.09 (0.02) 

0.14 

0.09 (0.02) 

49.58 

BDL 

12.81 

0.04 (0.02) 

13.58 

0.13 (0.02) 

0.41 

0.13 (0.00) 

0.25 

SO4
2
 ⁻-S 20.5 (2.1) 

23.7 

17.9 (2.0) 

41.6 

20.5 (1.8) 

34.0 

18.9 (2.1) 

32.3 

20.9 (2.6) 

27.6 

20.5 (2.4) 

26.4 

pH 8.0 (0.3) 

8.4 

7.0 (0.1) 

5.5 

7.2 (0.1) 

6.7 

7.5 (0.2) 

6.4 

7.6 (0.5) 

8.7 

7.7 (0.2) 

8.7 

 

 

Table 3.3. Results from the anoxic, aerobic and inactivated control microcosms experiments 

during Phase 2.  All parameter values are in mg/L with the exception of pH; standard deviation 

values are shown in parenthesis; BDL is below detection limit; only the initial DO concentration 

for the aerobic microcosms is shown.  Initial anoxic DO concentrations were 1.0 mg/L.
 

Parameter
 

Initial Anoxic Aerobic Inactivated control 

NO3⁻   -N 1.96 (0.00) 0.06 (0.05) 0.39 (0.18) 1.90 (0.03) 

NO2
⎺ -N 0.02 (0.00) 0.03 (0.00) 0.04 (0.00) 0.04 (0.00) 

NH4
+
   -N BDL (-) BDL (-) BDL (-) 0.95 (0.06) 

Org-N 0.4 (0.17) 0.4 (0.02) 0.3 (0.04) 1.9 (0.06) 

TN 2.4 (0.15) 0.5 (0.03) 0.7 (0.18) 4.8 (0.06) 

DOC 3.9 (0.05) 4.9 (0.23) 4.6 (0.32) 71.4 (5.0) 

PO4
3
 ⁻-P 0.12 (0.00) 0.09 (0.00) 0.08 (0.01) 0.74 (0.09) 

SO4
2
 ⁻-S 35.5 (0.2) 34.2 (0.3) 35.6 (0.2) 50.8 (1.0) 

DO 5.2 (0.7) 0.0 (0.0) 0.1 (0.2) - 

pH 7.7 (0.11) - - - 
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 Table 3.4. Overall storm event influent and effluent water quality characteristics during the 

column study.  Flow weighted influent and effluent concentrations (mg/L) are shown with the 

standard deviation (mg/L) in parenthesis and the total mass removed (%) in brackets.  Flow 

weighted effluent values are shown for pH. 
 NO3

⁻   -N 
TKN TN PO4

3
 ⁻-P SO4

2
 ⁻-S 

TSS VSS DOC pH 

Influent 2.13 (0.55) 0.3 (0.1) 2.5 (0.6) 0.12 (0.03) 65.3 (5.7) 6.1 (2.2) 1.8 (0.7) 4.8 (0.4) 7.6 (0.3) 

Storm #          

1 0.28 [86] 0.4 [-24] 0.7 [68] 0.03 [70] 50.3 [8] 2.4 [57] 0.4 [74] 5.9 [-37] 6.9 

2 0.05 [97] 0.4 [7] 0.5 [79] 0.03 [73] 51.6 [16] 2.8 [38] 0.5 [68] 22.0 [-368] 6.8 

3 0.08 [96] 0.5 [-45] 0.6 [75] 0.04 [60] 57.1 [14] 1.8 [55] 0.3 [76] 6.8 [-42] 7.0 

4 0.06 [97] 0.5 [-17] 0.6 [76] 0.04 [73] 62.0 [12] 1.9 [67] 0.2 [87] 11.5 [-130] 6.9 

5 0.25 [86] 0.5 [-12] 0.8 [65] 0.04 [68] 71.4 [-2] 2.6 [69] 0.6 [61] 5.3 [3] 7.0 

6 0.40 [89] 0.4 [-49] 1.1 [73] 0.06 [54] 58.1 [13] 2.6 [70] 0.8 [65] 11.2 [-115] 7.1 

7 0.84 [62] 0.4 [-53] 1.3 [49] 0.04 [74] 56.6 [13] 3.2 [38] 1.0 [41] 9.0 [-94] 7.0 

8 0.81 [58] 0.5 [-103] 1.4 [38] 0.08 [49] 58.9 [12] - - 11.2 [-146] - 

9 0.06 [97] 0.5 [-55] 0.6 [75] 0.16 [-29] 64.5 [14] - - 16.7 [-251] 7.0 

10 0.39 [80] 0.5 [-234] 1.0 [55] 0.01 [86] 58.2 [5] - - 5.6 [-21] - 

11 0.33 [84] - - 0.00 [100] 63.4 [-3] - -  - 

Overall 0.32 [85] 0.5 [-43] 0.9 [66] 0.07 [59] 59.3 [9] 2.5 [59] 0.6 [68] 10.5 [-119] 7.0 

 

 

 

Figure 3.1. General laboratory setup for the storm event studies. 
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Figure 3.2. Normalized NO3⁻     concentrations over time in gravel-wood microcosms incubated 

under anoxic, aerobic and inactivated control conditions.  Lines represent denitrification models 

for the anoxic (k1a) and aerobic (k1o) microcosms.  Error bars represent standard deviations of 

triplicate microcosms. 
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Figure 3.3. Mean NO3⁻   -N (a) and DOC (b) concentrations for SE #’s 1-5 and 9, which were 

operated under the same hydraulic loading conditions.  Effluent DOC data from the initial pore 

water (58.8 mg/L) and one hour detention time (24.4 mg/L) samples are not shown.  Error bars 

represent standard deviations. 
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Figure 3.4. NO3⁻     removal efficiency data comparing the effects of varying ADCs from SE #4 (8 

day ADCs) and SE #5 (0 day ADCs). 

 

 

 

Figure 3.5. NO3⁻    removal efficiency data comparing low and high flow storm events.  LF, HF 

and “Det” values represent the low flow storm event (SE #4), high flow storm event (SE #7) and 

detention time, respectively. 
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Figure 3.6. Nitrate removal efficiency data comparing storm events SE #8 (1 hr), SE #10 (2 hr) 

and SE #11 (3 hr) with a constant detention time.  SE #11 sample data after 15 pore volume were 

discharged are not shown. 
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Chapter 4: 

Dynamic Processes in Internal Water Storage Zones of Bioretention Systems
2 

 

4.1 Introduction 

Bioretention systems are Low Impact Development (LID) technologies that minimize the 

hydrologic impact created by development (Dietz, 2007).  Bioretention systems were originally 

designed to reduce runoff volumes by enhancing infiltration; however, additional benefits of 

bioretention include pollutant removal and surface water attenuation (Morzaria-Luna et al., 

2004).  A number of bioretention studies have confirmed that these systems achieve high 

removal efficiencies for suspended solids, phosphorus, heavy metals, oil and grease and fecal 

indicator bacteria (Hsieh and Davis, 2005; Davis et al., 2006; Ergas et al., 2010; Zhang et al., 

2011; Zhang et al., 2012).  In addition, modified bioretention systems have been developed that 

enhance the removal of nitrate (NO3⁻    ) by incorporating a submerged internal water storage zone 

(IWSZ) that includes an organic carbon source to promote denitrification (Collins et al., 2010; 

Lucas and Greenway, 2011). 

 

Modified bioretention systems are passive systems that operate intermittently with 

varying hydraulic loading rates.  During a storm event, runoff is conveyed into the ponding area, 

where the water elevation reaches the highest level near the end of a storm event.  This creates a  

 

2 Note:  Portions of this chapter have been submitted and are under review for publication to “Journal of Environmental Engineering – ASCE”.  

The co-authors of the manuscript included Thomas Lynn, Mahmood Nachabe and Sarina Ergas.  Research questions and experimental design 
were developed by Thomas Lynn and Sarina Ergas.  Thomas Lynn performed laboratory work.  Thomas Lynn and Sarina Ergas drafted the paper.  

Data interpretation and comments were provided by all authors. 
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hydraulic gradient that allows runoff from the ponding area to flow through the IWSZ.  After a 

storm event, the water elevation decreases in the ponding area, and causes the IWSZ hydraulic 

loading rate to decrease.  To gain a better understanding on proper design of IWSZs, previous 

studies have focused on evaluating NO3⁻    removal as a function of the hydraulic loading rate (Kim 

et al., 2003; Smith, 2008; Ergas et al., 2010; Lee et al., 2013).  Their results indicate that lower 

hydraulic loading rates (or higher detention times) increase NO3⁻    removal efficiency.  However, 

even on a macro-scale, NO3⁻    removal in IWSZs is a function of the dispersion coefficient (D; 

cm
2
/s) and the denitrification rate constant in addition to the hydraulic loading rate.  

 

Due to the hydrodynamic nature of IWSZs, understanding dispersion and how it affects 

water quality performance is essential.  Prior published studies on the effect of dispersion in 

IWSZs on NO3⁻    removal are unavailable; however, dispersion has been studied in related systems, 

such as conventional bioretention systems and denitrifying bioreactors.  Chun et al. (2009) 

developed a transport model based on laboratory data for denitrifying bioreactors.  Grismer et al. 

(2012) performed a tracer study on conventional bioretention systems using various media types.  

Both studies found that estimated D values varied for each data set. 

 

There are two general equations that can be used to calculate D in porous media (e.g. 

IWSZs), as shown in Equation 4.1 (Gunn and Pryce, 1969) and Equation 4.2 (Bear, 1972).  

                                                         
  

 
 

 

 
                                                            (4.1) 

                                                                  (4.2) 

where Dm is the molecular diffusion coefficient (cm
2
/s);   is the tortuosity factor (2

0.5
); v is the 

pore velocity (cm/s); d is the average particle diameter of the media (cm); and αL is the 
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longitudinal dispersivity (cm).  Equations 4.1 and 4.2 can be rewritten to include the Peclet 

Number, which is a dimensionless number that can be used to quantify whether advection or 

dispersion dominate transport processes (Crittenden et al., 2005).  In Equation 4.1, the Peclet 

Number is equal to PeL (PeL = vd/D; Gunn and Pryce, 1969); however, in Equation 4.2, the 

Peclet Number is equal to Pe (Pe = L/ αL or vL/D; Kramer and Westererp, 1963), where L is the 

length or depth (cm).  Equations 4.1 and 4.2 both predict that higher pore velocities increase D.  

However, there are three fundamental differences between Equation 4.1 and 4.2: (1) Equation 

4.1 calculates the Peclet Number as a function of d instead of L; (2) Equation 4.1 assumes that 

the Peclet Number varies with a change in pore velocity, while Equation 4.2 assumes that the 

Peclet Number is constant (Charbeneau, 2006); and (3) the diffusive terms are calculated 

differently.  Due to these fundamental differences, an additional investigation that evaluates how 

D varies with v is warranted. 

 

 Although the Facility for Advancing Water Biofiltration (FAWB) recommends an IWSZ 

depth of 45 cm, only a few published studies have rigorously evaluated how depth affects the 

water quality performance of bioretention systems with IWSZs.  Brown and Hunt (2011) 

performed a field study of modified bioretention systems and observed higher total nitrogen 

removal with IWSZ depths of 0.73-1.03 m compared with 0.57-0.87 m.  However, the systems 

utilized different media types.  Zinger et al. (2007) performed a laboratory study and observed 

higher NO3⁻    removal efficiencies with IWSZ depths of 45 and 60 cm compared with 15 cm.  

Results from these studies indicate that taller IWSZs improve NO3⁻    removal efficiency; however, 

neither of these studies compared the performance of these IWSZs with equal detention times.  
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As a result, these studies only provide evidence that greater detention times, rather than a 

specific IWSZ depth, improve NO3⁻    removal efficiency. 

 

The overall goal of this research was to investigate the dynamic performance of IWSZs in 

bioretention systems.  The specific objectives of this study were to: (1) evaluate the hydraulic 

performance of IWSZs; (2) refine the general equations used to calculate D to produce more 

accurate results; and (3) evaluate the removal efficiency for NO3⁻    and other water quality 

parameters of three IWSZs with varying depths that were operated with equal detention times.  

Temperature, plant uptake and nitrification also play a direct and/or indirect role in IWSZ 

performance; however, these factors were not considered in this study. 

 

4.2 Materials and Methods 

 4.2.1 Experimental Setup   

A schematic of the laboratory setup for the column study is shown in Figure 4.1.  Source 

water used for this study was local stormwater runoff from a pond at the University of South 

Florida, Tampa.  Stormwater was spiked with KNO3  to achieve a NO3⁻   -N concentrations of 2 

mg/L to mimic nitrified stormwater runoff (Schueler, 2003).  All studies were performed at room 

temperature (approximately 22°C).  A 2:1 (vol/vol) mixture of 0.6 to 1.3 cm pea gravel (Seffner 

Rock and Gravel, Tampa, FL) and 1.3 to 2.5 cm eucalyptus wood chips (Sarasota County, 

Sarasota, FL) was used. The porosity was 0.42.  The media type used in this study was based on 

a prior study (see Chapter 3) showing that high NO3⁻     removal could be achieved with this 

mixture.  Experiments were carried out in three 12.7 cm ID acrylic columns with depths of 30, 

45 and 60 cm.  The gravel and wood medium in each column was supported by a 7.6 cm under-
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drain layer of pea gravel to prevent clogging.  The discharge pipes were 1.3 cm ID schedule 40 

PVC.  The discharge pipes were designed to collect water from the under-drain layer and to 

discharge effluent above the IWSZ layer to completely submerge the medium.  The pump used 

for this study was a Cole Parmer Masterflex L/S Economy Drive (Thermo Fisher Scientific, 

Waltham, Massachusetts), which was controlled by manually adjusting the pump flow valves. 

 

 4.2.2 Tracer Study 

 Three tracer tests were conducted for each column, while maintaining constant IWSZ 

detention times of one, three and four hours.  Prior to the start of each test, four pore volumes of 

influent without the tracer were flushed through the columns to remove compounds that could 

alter baseline conductivity measurements.  The tracer tests proceeded by spiking the influent 

with 2, 3 and 4 liters of a 200 mg/L potassium chloride (KCl) solution into the 30, 45 and 60 cm 

columns, respectively.  Influent without tracer was fed to the columns for the remaining time of 

each tracer test.  Samples were collected from the outlets of the columns and conductivity was 

measured as described below.  The conductivity value was adjusted to account for the 

background conductivity of the influent and was converted to KCl concentration based on a 

calibration curve. 

 

Data from the tracer tests were used to estimate dispersive parameters that included: D, 

t50, Morrill Dispersion Index (MDI) and Pe.  The term t50 is the time when 50% of the tracer 

mass has passed through the column.  The MDI describes the hydraulic characteristics of a 

reactor as compared to ideal plug flow (MDI = 1) and complete mixed flow reactors (MDI ≈ 22) 

(Tchobanoglous et al., 2003).  The Pe is particularly useful because the degree of dispersion in a 
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reactor can be predicted if Pe is known; for instance, Pe values less than 4 and greater than 20 

indicate high and low dispersion, respectively (Tchobanglous et al., 2003). 

 

The one-dimensional convective-dispersive solute transport equation (Van Genutchen 

and Alves, 1982) was used to estimate D and Pe:   

 
  

  
  

   

   
  

  

  
                                                      (4.3) 

where R is the retardation coefficient; C is the tracer concentration (mg/L); t is time (s); and x is 

the distance from the IWSZ inlet.  The retardation coefficient in Equation 4.3 was set to one 

based on the assumption that adsorption of the KCl tracer onto the media was negligible.    The 

appropriate initial and boundary conditions for Equation 4.3 (Delgado, 2006) are: 

 (   )                                                              (4.4a) 

(  
  

  
   )|

   
 {

                      
                            ≥   

                                (4.4b) 

  

  
(   )                                                             (4.4c) 

where C1 is the initial tracer concentration in the column (mg/L); C0 is the tracer solution 

concentration that was used in the study; and t0 is the time at which the tracer solution was no 

longer applied to the columns.  An approximate solution to Equation 4.3 modified from the 

solution presented in Genutchen and Alves (1982) to include Pe yields: 

 (   )  {
   (     )   (   )                                                     
   (     )   (   )      (      )                   ≥   

          (4.5a) 

where 
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(4.5b) 

 

The L value for each column was adjusted to include the length of the under-drain layer.  

The dispersive characteristics of the under-drain and IWSZ layers were assumed to be equal.  

Equation 4.5 was used to estimate D and Pe values for each tracer test. 

 

4.2.3 Theory 

 The general equations to estimate D (Equations 4.1 and 4.2) were refined to estimate D 

using experimental data from the tracer study.  The theory assumes that the Peclet Number 

(using the term Pe) is a function of the Reynolds Number (Re; Re = qd/v), where q is the 

superficial velocity (flow rate divided by the cross-sectional area of the column; cm/s); and 

ν is the kinematic  iscosity (cm2/s).  Expressions that relate Pe and Re were tested to evaluate 

which expression yielded the highest correlation with the experimental data.  The general 

equation that was used to evaluate the expressions was: 

     (  )                                                           (4.6) 

After the highest correlated expression was selected, Equation 4.6 was then used to solve for D, 

using: 

  
  

  (  )
                                                              (4.7) 

To account for extreme conditions (i.e. Re 0), the term Peo was inserted into Equation 4.7:   
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  (  )    
                                                           (4.8) 

where Pe0 is defined as the hypothetical Pe value when a reactor is operating under no flow 

conditions.  To account for no flow conditions, a diffusive term (Dm/ ) and a Re dead constant 

(10
-6

) was inserted into Equation 4.8, to yield:  

  
  

 
 

  

  (       )    
                                                 (4.9) 

 

4.2.4 Column Study 

Eleven storm events were investigated in the column study as shown in Table 3.1 (see 

page 44).  Eight of the storm events were set up to simulate a storm that discharges runoff into 

the bioretention ponding area as a slug load, while the other three storm events were set up to 

simulate a constant flow of runoff.  The detention times were varied by manually adjusting the 

pump flow valves for a specific period of time.  The term ADC was defined as the time period 

between the end of a previous storm event to the beginning of the next storm event. 

 

4.2.5 Analytical Methods 

Standard Methods (Standard, 2012) were used to measure dissolved organic carbon 

(DOC) (Method 5310B), total nitrogen (TN) (4500-N), total suspended solids (TSS) (2540D) 

and volatile suspended solids (VSS) (2540D).  Anion (NO3⁻   , nitrite [NO2
⎺   ], phosphate [PO4

3
 ⁻] and 

sulfate [SO4
2
 ⁻]) and ammonium (NH4

+
   ) concentrations were measured by ion chromatography 

(USEPA, 1997) using an 850 Professional Ion Cromatograph (Metrohm AG, Herisau, 

Switzerland).  A Shimadzu TOC-V CSH Total Organic Carbon / Total Nitrogen Analyzer 

(Shimadzu Scientific Instruments, Columbia, Maryland) was used to measure non-purgeable 

organic carbon (NPOC) and total nitrogen (TN).  NPOC concentrations were used to estimate 
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DOC concentrations.  Total Kjeldahl Nitrogen (TKN) concentrations were estimated by 

difference TKN ≈ TN – [NO3⁻   -N + NO2
⎺   -N].  An Orion 5 Star (Thermo Scientific Inc., Beverly, 

Massachusetts) meter with a calibrated probe was used to measure pH, dissolved oxygen and 

conductivity.  Method detection limits for DOC, TN, NO3⁻   -N, NO2
⎺   -N , PO4

3
 ⁻-P, SO4

2
 ⁻-S, NH4

+
   -N 

were 0.11, 0.03, 0.01, 0.04, 0.02, 0.01 and 0.07 mg/L, respectively. 

 

4.2.6 Statistical Analysis 

The estimated Pe and D values for each tracer test were determined by using a nonlinear 

least-squares method by minimizing the sum of square residuals (SSR) (Kemmer and Keller, 

2012) between the experimental data and the convective-dispersive solute transport model.  

Fisher’s F Distribution 95% confidence intervals were used to determine Pe confidence intervals 

(Kemmer and Keller, 2012).  The following analyses were determined through linear regression 

to calculate the coefficient of determination (r
2
): potential relationships between an expression 

containing Pe and another containing the Reynolds Number (Re); the best-fit Pe0 value; and the 

relationship between the final expression that was used to calculate D (in the form of Eq. 9) and 

the D values determined from the tracer study data.  During the column study, flow weighted 

influent and effluent concentrations were used to calculate mass removal efficiency.  Storm event 

TN removal efficiency data from the three IWSZs were compared using two-way analysis of 

variance. 

 

4.3 Results 

The results from a typical tracer test that was performed during this study are shown in 

Figure 4.2.  During the one hour detention time tracer tests (Figure 4.2a), 95% of the tracer mass 
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was recovered before 3.3 pore volumes had discharged.  Breakthrough from all columns 

occurred at approximately 0.8 pore volumes discharged.  During the four hour detention time 

tracer tests (Figure 4.2b), 95% of the tracer mass was recovered before 6.1 pore volumes had 

discharged.  In addition, breakthrough from the 30 and 60 cm columns occurred at 0.5 and 0.7 

pore volumes discharged, respectively. 

 

The dispersive parameters that were calculated from the tracer test data are shown in 

Table 4.1.  The one hour detention time Pe values for all of the columns were between 12 and 15, 

which indicate moderate dispersion.  However, during the three and four hour detention time 

tracer tests, moderate dispersion was observed in the 45 and 60 cm columns and high dispersion 

was observed in the 30 cm column.  The lowest MDI values for each column were observed 

during the one hour detention time tracer tests.  During the one hour detention time tracer tests, 

t50 for each column was similar (1.8 to 2.0 hr); however, during the three and four hour detention 

time, t50 for the 30 cm column was at least 0.7 hr less than the 45 and 60 cm columns.  The D 

value was only observed to increase with a decrease in detention time (or increase in velocity) 

during the 60 cm column tracer tests. 

 

 The following relationships between Pe and Re were evaluated using the tracer test data: 

(1) Pe versus Re (r
2
=0.62); (2) 1/Pe versus 1/Re (r

2
=0.84); (3) Pe versus 1/Re (r

2
=0.88); and (4) 

ln Pe versus 1/Re (r
2
=0.94; Figure 4.3).  The fourth relationship had the highest correlation and 

results in: 

      
 (

  
  
)
                                                        (4.10) 
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where the initial estimates for the constants C1 and C2 were 21.4 and 0.32, respectively.  Pe0 

values of 0, 0.25, 0.5 and 1.0 were tested in Eq. 8.  The most appropriate Pe0 value was chosen 

using the following criteria: verifying that large D values are not calculated at low Re values; and 

by limiting the change of the ‘best-fit’ r
2
 value (from when Pe0 = 0) between the data and 

Equation 4.8 to less than 0.05.  Based on these criteria a Pe0 value of 0.5 was determined.  

Equation 4.10 was inserted into Equation 4.9 with the appropriate parameters to yield: 

  
  

 
 

  

   
 (

    

       
)
    

                                               (4.11) 

The r
2
 value between Equation 4.11 and the estimated D values from the experimental data 

(Equation 4.4) was 0.76. 

 

A summary of the overall water quality results from the storm event studies with the 

three columns are shown in Table 4.2.   All of the columns removed NO3⁻   , TN,  

PO4
3
 ⁻, SO4

2
 ⁻, TSS and VSS and produced TKN and DOC.  NO3⁻    removal efficiencies from the 45 

and 60 cm columns were greater than from the 30 cm column.  Overall TN removal efficiency 

from the 30 cm column was significantly less than the 45 and 60 cm columns (both p-

values<0.01).  Overall TN removal efficiency was not significantly different between the 45 cm 

and 60 cm columns (p-value=0.38). 

 

 NO3⁻     removal efficiency data from SE #4, SE #6, and SE #7 are shown in Figure 4.4.  

During these storm events, NO3⁻    removal efficiencies from the 30 cm column samples were lower 

than the 45 and 60 cm column samples when the detention time was 2 hr or greater; however, 

NO3⁻    removal efficiencies from each column were similar when the detention time was less than 2 



www.manaraa.com

62 
 

hours.  NO3⁻    removal dynamics for every column and during each of these storm events were 

otherwise similar.  High NO3⁻    removal efficiencies (>95%) and effluent DOC concentrations 

(data not shown) were observed in the first samples as the initial pore water was flushed from the 

system.  Lower NO3⁻    removal efficiencies and effluent DOC concentrations were then observed 

in the second samples as the influent mixed with the initial pore water.  Thereafter, higher NO3⁻    

removal efficiencies were observed when the detention time increased.   In addition, effluent 

DOC concentrations decreased to or were lower than influent DOC concentrations over the 

initial five samples taken. 

 

 NO3⁻     removal efficiency data from the constant two hour detention time storm event (SE 

#10) are shown in Figure 4.5.  During this storm event, NO3⁻    mass removal efficiencies of 73, 80 

and 90% were observed from the 30, 45 and 60 cm columns, respectively.   However, during the 

constant one hour detention time storm event (SE #8) NO3⁻    mass removal efficiencies of 59, 58 

and 59% were observed from the 30, 45 and 60 cm columns, respectively. 

 

4.4 Discussion 

The tracer study data (Figure 4.2) can be useful in understanding how detention time and 

depth affect the hydraulic performance of IWSZs.  In terms of pore volumes discharged, 

breakthrough during the four hour detention time tracer tests (Figure 4.2b) occurred earlier than 

during the one hour detention time tracer tests (Figure 4.2a).  This indicates that lower detention 

times increase the hydraulic efficiency of IWSZs.  Moreover, during the one hour detention time 

tests, breakthrough from each column occurred at similar pore volumes discharged; however, 

during the four hour detention time tests, breakthrough from the 30 cm column occurred earlier 
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than from the 60 cm column.  This indicates that at high detention times, the hydraulic efficiency 

of taller IWSZs is greater than for shorter IWSZs; however, at low detention times the hydraulic 

efficiencies of shorter and taller IWSZs are similar. 

 

Analysis of the tracer study results (Table 4.1) also provides evidence that greater depths 

and lower detention times improve the hydraulic efficiency of IWSZs.  The highest Pe and 

lowest MDI values observed during the one hour detention time tracer tests indicates that a 

decrease in detention time increases hydraulic efficiency.  Similar t50 values observed during the 

one hour detention time tracer tests provide additional evidence that the hydraulic efficiency for 

each column was similar; however, at higher detention times, the hydraulic efficiency decreases 

when the IWSZ depth decreases.  The fundamental theory for Equations 4.1 and 4.2 could be 

applied to the results obtained from the 60 cm column, where D increased with an increase in 

velocity (decrease in detention time).  However, D did not increase with an increase in velocity 

in the 30 and 45 cm columns.  This provides an example of how Equation 4.1 does not produce 

accurate results with experimental data (Delgado, 2006).  In addition, the results of this study 

indicate that Pe changes with a change in Re (Figure 4.3) or pore velocity, which conflicts with 

the fundamental theory used in developing Equation 4.2. 

    

The tracer study results provide new insights into the dynamic nature of IWSZs in 

bioretention systems.  At higher flow rates, the hydraulic efficiency increases; however, 

denitrifying bacteria have less time to respire NO3⁻   .  At lower flow rates, the hydraulic efficiency 

decreases; however, denitrifying bacteria have more time to respire NO3⁻   .  In addition, the tracer 

study results indicate that an increase in IWSZ depth improves hydraulic efficiency, which 
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increases NO3⁻    removal efficiency.  The combined effects of these phenomena can be understood 

by analyzing the SE #6 NO3⁻    removal efficiency data shown in Figure 4.4b.  For the 30 cm 

column, the difference in NO3⁻    removal efficiency between the one and four hour detention time 

samples was only 6%; however, in the 60 cm column, the difference was 23%. 

 

Data from the tracer study were used to develop a novel equation for calculating D.  

Equation 4.10 implies that as Re increases, Pe increases.  This indicates that at higher flow rates, 

advection dominates over dispersion (Tchobanoglous et al., 2003).  Thus, higher flow rates cause 

the system to operate closer to ideal plug flow conditions.  This is also shown in the experimental 

data provided in Table 4.1, where higher Pe values were observed during lower detention times 

(high flow rates) compared to higher detention times.  Equation 4.11 included the term “Pe0” that 

was developed primarily for modeling purposes.  The addition of Pe0 allows Pe Pe0 as Re 0, 

which would prevent the calculation of large D values when Re is small (0.05 < Re < 0.1). 

 

The method used to estimate D from the tracer test data was constrained to one 

independent variable.  Chun et al. (2009) estimated D by allowing the denitrification decay 

constant, the velocity and D to change in order to fit data to their model, while other studies 

followed a similar approach (Zhang et al., 2010; Herbert, 2011; Delay et al., 2013).  Grismer et 

al. (2012) estimated D by setting D as the only independent variable.  However, their study 

assumed the porosity and pore water volume for their reactor.  The results from these studies 

would have greater validity if D was the only independent variable and if all critical parameters 

were measured, rather than estimated.  
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The overall water quality results (Table 4.2) are useful for comparing how different 

IWSZ depths affect the overall performance of IWSZs.  Significantly lower TN removal 

efficiencies were observed from the 30 cm column, indicating that the hydraulic efficiency of 

IWSZs decreases with a decrease in depth.  Similar results were observed for each IWSZ with 

respect to the removal or production of water quality constituents other than NO3⁻   .  These results 

provide evidence that multiple processes occur in IWSZs including: dispersion; denitrification; 

TKN production; phosphate reduction; sulfate reduction; filtration; and hydrolysis. 

     

NO3⁻     removal efficiency data from SE #4 (Figure 4.4a) shows how varying IWSZ depths 

affect NO3⁻    removal.  In the 45 and 60 cm columns, NO3⁻    removal efficiency increased with 

increasing detention time.  Previous studies have also observed a positive correlation between 

NO3⁻    removal efficiency and detention time (Kim et al., 2003; Smith, 2008).  However, this was 

not observed when comparing the one and two hour detention time samples taken from the 30 

cm column.  The 30 cm column results could be explained by the mixing of the influent and 

water previously retained in the IWSZ, which resulted in higher NO3⁻    removal efficiencies during 

the initial operating period (Kim et al., 2003).  Another hypothesis could be that lower effluent 

DOC concentrations from the two hour detention time samples limited NO3⁻    removal efficiency.  

However, both of these explanations would also infer that the 30, 45 and 60 cm columns would 

have similar NO3⁻    removal efficiencies, which was not the case in this study.  Differences in NO3⁻    

removal efficiency from IWSZs with varying depths was likely due to dispersion, where lower 

hydraulic efficiencies were observed in the 30 cm column compared to the 45 and 60 cm 

columns.  These results provide evidence that taller IWSZs require less media volume than 

shorter IWSZs to remove the same amount of NO3⁻    . 
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 NO3⁻    removal efficiency data from SE #6 (Figure 4.4b) are useful for comparing how 

IWSZs with varying depths are affected by higher influent NO3⁻    concentrations.  Since NO3⁻    was 

almost completely removed in most of the 45 and 60 cm effluent samples during the other storm 

events, SE #6 data provides a more quantifiable view of the extent of NO3⁻    removal.  During the 

one hour detention time, NO3⁻    removal efficiency from the samples for each column were 

relatively equal; however, greater removal efficiencies were observed in the 45 and 60 cm 

columns than the 30 column at higher detention times.  This was also observed during SE #2, SE 

#3, SE #4 (Figure 4.4a), SE #5 and SE #9, which were all operated under the same flow 

conditions but varying ADCs.  These results provide evidence that dispersion consistently affects 

NO3⁻    removal efficiencies in storm events that have varying influent NO3⁻    concentrations and 

ADCs. 

 

NO3⁻    removal efficiency data from SE #7 (Figure 4.4c) are useful for comparing how 

IWSZs with varying depths are affected by higher flow rates.  The decrease in NO3⁻    removal 

efficiency during the initial stage could be explained by water mixing and DOC flushing 

processes, as previously discussed.  However, the differences in NO3⁻    mass removal efficiencies 

between each of the columns were relatively small compared to the other storm events that were 

operated with lower flow rates.  This is consistent with the tracer study results, where the 

estimated Pe values during lower detention times (1 hr) indicated moderate dispersion from each 

of the columns.  These results provide additional evidence that dispersion limits NO3⁻    removal 

efficiencies to a lesser degree at higher flow rates, but will play a more prominent role at lower 

flow rates. 
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NO3⁻     removal efficiency data from the constant two hour detention time storm event 

(Figure 4.5) illustrate how dispersion affects NO3⁻    removal efficiency for a specific IWSZ depth 

and detention time.  As indicated by the tracer study results, taller IWSZs tend to operate closer 

to plug flow conditions compared to shorter IWSZs; hence, the taller column (60 cm) was 

observed to have a greater NO3⁻    mass removal efficiency than the 30 and 45 cm columns.  Similar 

results were also observed during the three hour detention time storm event (SE #11).  However, 

during the one hour detention time (SE #8), NO3⁻    mass removal efficiencies for each column were 

almost equal.  This is consistent with the one hour detention time tracer tests where moderate 

dispersion was observed in all of the columns. 

 

This study clearly demonstrates that dispersion plays a role in limiting NO3⁻    removal 

efficiencies in IWSZs and its degree of impact depends both on depth and hydraulic loading rate.  

However, this study only evaluated one media type under laboratory conditions, where the effect 

of dispersion under varying environmental conditions and media types may be different.  For 

example, Nachabe et al. (1999) studied solute transport in soil and observed that hydraulic 

efficiency is greater in unsaturated compared to saturated soils.  In addition, Cameron and 

Schipper (2012) evaluated the hydraulic efficiency of various carbon-containing media types for 

use in denitrifying bioreactors and observed that dispersion played a minor role in affecting NO3⁻    

removal efficiency.  However, their tracer study was conducted at one flow rate, where 

dispersion may have not affected NO3⁻    removal efficiency. 

 

Dispersion and advection may not be the only flow related processes that affect NO3⁻    

removal efficiencies in IWSZs.  It is quite possible that the pore velocity can change the pore 
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water/ biofilm mass transfer coefficient (Nath and Chand, 1996; Mudlar et al., 2008) or the 

biofilm thickness (Delay et al., 2013) of attached growth systems, such as IWSZs.  Future 

research should investigate the degree in which the changes in the dispersion coefficient, mass 

transfer coefficient and biofilm thickness as a function of the Reynolds Number affect the 

transport of chemicals through different types of porous media systems. 

 

4.5 Conclusions 

Hydrodynamics and water quality performance were evaluated in three IWSZs for 

bioretention systems with varying depths (30, 45 and 60 cm).  Results from tracer tests indicate 

that taller IWSZs are more hydraulically efficient than shorter IWSZs.  An alternative equation 

for estimating dispersion in saturated porous media was introduced.  Results from the storm 

event studies indicated that NO3⁻    removal efficiencies of taller IWSZs were greater than shorter 

IWSZs even when these reactors were operated with equal detention times; however, at higher 

flow rates, NO3⁻    removal efficiencies of taller and shorter IWSZs were similar.  These results 

provide evidence that dispersion affects the NO3⁻    removal efficiency of IWSZs.  Based on these 

results, the minimum recommended depth for IWSZs in bioretention systems was 45 cm. 

  



www.manaraa.com

69 
 

Table 4.1. Estimated dispersive parameters that were calculated from the data obtained during 

each tracer test. 

Column IWSZ detention time (hr) Pe 
a 

D x 10
-2

 (cm
2
/s) t50 (hr) 

b
 MDI 

c
 

30 cm 1 13.1 (8.4 – 20.8) 2.7 2.0 2.3 

 3 2.5 (2.1 – 2.9) 4.8 4.8 4.4 

 4 1.5 (1.2 – 1.9) 5.9 5.7 4.5 

45 cm 1  12.2 (7.2 – 21.4) 6.2 2.0 2.3 

 3 7.9 (5.8 – 10.6) 3.2 5.5 3.1 

 4 4.4 (3.8 – 5.0) 4.4 6.6 4.4 

60 cm 1 14.8 (9.8 – 23.2) 8.8 1.8 2.4 

 3 6.2 (4.2 – 9.1) 7.0 5.6 3.8 

 4 6.8 (5.4 – 8.5) 4.8 6.9 3.6 
a Values in parenthesis represent Fisher’s 95% confidence interval 
b t50 the time when 50% of the tracer mass has passed through the columns 
c MDI represents the Morrill Dispersion Index 
 

 

Table 4.2. Overall water quality results of the three IWSZs (30, 45 and 60 cm) during the storm 

event study. 

 Mean concentration 
a 

Mass removal efficiency (%)
 

 Influent Column Column 

  30 cm 45 cm 60 cm 30 cm 45 cm 60 cm 

Parameter 
 

      

NO3⁻   -N 2.13 (0.55) 0.44 (0.39) 0.30 (0.38) 0.30 (0.41) 78 85 85 

TKN 0.3 (0.1) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) -43 -42 -49 

TN 2.5 (0.6) 1.0 (0.4) 0.8 (0.4) 0.9 (0.4) 60 66 65 

PO4
3
 ⁻-P 0.12 (0.03) 0.07 (0.16) 0.07 (0.18) 0.09 (0.22) 58 60 49 

SO4
2
 ⁻-S 65.3 (5.7) 54.5 (21.2) 54.6 (21.4) 54.9 (21.6) 10 9 9 

TSS 6.1 (2.2) 2.8 (0.9) 2.5 (0.9) 2.4 (0.7) 55 59 61 

VSS 1.8 (0.7) 0.6 (0.5) 0.5 (0.5) 0.5 (0.3) 64 68 72 

TOC 4.8 (0.4) 10.1 (13.1) 13.4 (20.8) 12.0 (18.8) -72 -119 -100 

pH 
b 

7.6 (0.3) 7.1 (0.2) 7.0 (0.2) 7.0 (0.2) -0.5 -0.6 -0.6 
a Values shown are in mg/L except for pH and values shown in parenthesis represent the standard deviation. 
b Mass removal efficiency pH values represent the weighted increase in effluent pH compared to influent. 
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Figure 4.1. General laboratory setup for the storm event studies.  The 30 (A), 45 (B) and 60 (C) 

cm columns were operated with equivalent detention times by varying the flow rate. 
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Figure 4.2. Tracer study data and cumulative distribution curves from the 30 and 60 cm columns 

operated with a detention time of one (a) and four (b) hours.  EAD represents the cumulative exit 

age distribution curve. 
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Figure 4.3. Estimated Pe values in relation to Re from each tracer test and Eq. 4.10 (r
2
 = 0.94) 

and the model used to calculate Pe as a function of Re (Eq. 4.10). 
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Figure 4.4. NO3⁻     removal efficiency data from the 8 day ADC base case (SE #4; Fig. 4a), higher 

influent NO3⁻     concentration (SE #6; Fig. 4b) and the higher flow rate (SE #7; Fig. 4c) storm 

events. 
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Figure 4.5. NO3⁻     removal efficiency data from the constant two hour detention time storm event 

(SE #10). 
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Chapter 5: 

A Nitrogen Loading Model for Bioretention Systems
3
 

 

5.1 Introduction 

 Excess nutrient (nitrogen and phosphorus) loadings from urban areas promote 

eutrophication in nearby surface waters.  This has contributed to the need for implementation of 

Numeric Nutrient Criteria (NNC) for rivers, lakes, and/or streams in 24 states within the United 

States, which will likely increase to 31 in 2016 (USEPA, 2014).  Numeric Nutrient Criteria 

standards pose a significant challenge to stormwater system designers because selected treatment 

technologies will need to provide a quantifiable nutrient (e.g., nitrogen and phosphorus) 

reduction benefit instead of being selected based on assumed removal efficiencies or the most 

practical option available (Clark and Pitt, 2012).  To quantify nutrient loadings, it is necessary to 

accurately model the hydrologic, hydraulic and transformation processes that occur in 

stormwater systems, such as bioretention systems. 

 

A bioretention system is an emerging stormwater treatment technology that is capable of 

reducing peak flow rates and runoff volumes (Davis et al., 2009).  Conventional bioretention 

systems include a ponding area, plants, an unsaturated layer, and can also include a storage layer 

and an under-drain pipe.  These systems are known to have poor nitrate removal efficiencies (See 

 

3 Note:  Portions of this chapter are being prepared for submission to the Journal of “Environmental Engineering – ASCE”.  The co-authors of the 
manuscript included Thomas Lynn, Mahmood Nachabe and Sarina Ergas.  Research questions, experimental design, drafting, data interpretation 

and comments were provided by all authors. 
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review by Collins et al., 2010).  To solve this problem, modified bioretention systems were 

introduced (Kim et al., 2003).  A modified bioretention system includes a submerged internal 

water storage zone (IWSZ) that contains a carbon-based medium to promote denitrification. 

  

A number of field, laboratory and modeling studies have evaluated nutrient removal and 

hydraulic performance in conventional and modified bioretention systems (See reviews by 

Collins et al., 2010; Ahiablame et al., 2012; and Hunt et al., 2012).  However, a model is needed 

that allows designers to appropriately size bioretention systems to meet hydrologic and nutrient 

reduction goals (Roy-Poirier et al., 2010; Ahiablame et al., 2012).  To meet this challenge, 

understanding how to model the fate and transport of nitrogen in bioretention systems is 

essential.  Modeling nitrogen loadings in bioretention systems is difficult because: (1) complex 

hydraulic and water quality processes need to be modeled together to estimate nitrogen loadings; 

(2) several nitrogen species are found in stormwater runoff (Taylor et al., 2005); (3) appropriate 

data sets that include nitrogen speciation concentrations in stormwater runoff are only available 

for some species, such as Total Kjedahl Nitrogen (TKN) or nitrate + nitrite (Pitt et al., 2005); and 

(4) numerous nitrogen transformation processes occur in bioretention systems (Lucas and 

Greenway, 2011) and are not well understood (Davis et al., 2009). 

 

 Several stormwater modeling programs have been developed to aid the design of 

bioretention systems.  Some models are broad in scope, where the properties of the catchment 

area largely govern system performance; however, these models assume that constant percent 

removal efficiencies dictate actual bioretention system performance (Ahiablame et al., 2012; 

Park et al., 2014; Wanielista et al., 2014).  Other models employ mechanistic approaches to 
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model the hydrologic, hydraulic, physical, chemical and/or biological processes occurring in 

bioretention systems (Atchison et al., 2006; Dietz, 2007; Elliott and Trowsdale, 2007; Palgehyi, 

2010; Ahiablame et al., 2012; Brown et al., 2013; Gao et al., 2013). In particular, the Stormwater 

Management Model (SWMM-5) is a continuous simulation model that provides designers the 

capability of modeling multiple interconnected and/or disconnected stormwater managment 

systems (bioretention, retention, pervious pavement, etc.) with one simulation (Elliott and 

Trowdale, 2007).  This allows designers to quickly analyze all of the hydrologic, hydraulic, and 

water quality aspects of an entire stormwater management system, instead of analyzing a 

performance metric for a single bioretention system. 

 

To develop a mechanistic nitrogen loading model, large data sets are needed to create 

process-driven equations that can be used with stormwater modeling programs.  However, few 

studies have used actual data to verify the accuracy of a nitrogen loading model.  Imteaz et al. 

(2013) compared total nitrogen (TN) removal efficiencies from experimental data with results 

from the Model for Urban Stormwater Improvement Conceptualisation (MUSIC).  They found 

that the model overestimated TN removal efficiency, possibly due to TN leaching from the 

bioretention cell media.  Deng et al. (2012) developed a variable residence time denitrification 

reaction model for predicting nitrate (NO3⁻    ) removal from stormwater; however, the model was 

only validated with data from studies where wastewater was the source water and from one data 

point where stormwater was the source water. 

 

 The model presented in this study represents a simplified approach in modeling the actual 

hydraulic/water quality processes that occur in bioretention systems.  Hydraulic models such as 
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RECARGA (Atchinson, 2006) and water quality models such as RT3D (Clement, 1997) would 

provide a more detailed representation of the processes that occur in bioretention systems; 

however, the model described in this paper was developed to prioritize application over a 

detailed representation.  Additional considerations that were used to develop the model included: 

(1) the ability to use the model in conjunction with stormwater modeling software programs that 

can output time interval flow data, such as SWMM-5; (2) the ability of stormwater software 

developers to incorporate the model into their programs; (3) enabling designers without 

backgrounds in both water resources and environmental engineering to understand and apply the 

model; (4) including a reasonable amount of hydraulic/water quality processes to characterize the 

dynamic nature of bioretention systems; and (5) reducing computational time. 

 

The overall goal of this study was to develop a mechanistic model that can quantify 

nitrogen transport and transformation processes in bioretention systems.  The specific objectives 

of this study were to: (1) develop a simplified approach to model saturated and unsaturated flows 

through modified bioretention systems using SWMM-5 software; (2) develop a nitrogen 

transformation model that can be used with SWMM-5; and (3) conduct a case study that 

evaluates annual nitrogen load reductions by implementing various bioretention system designs.  

This model was developed from prior experimental studies that were conducted in the 

laboratories at the University of South Florida, Tampa, Florida (see Chapters 3 and 4) and the 

University of Maryland, College Park, Maryland (Davis et al., 2006). 
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5.2 Methods 

5.2.1 Model Development 

 The model was broken down into two components: hydraulic and water quality.  The 

equations for the hydraulic component were inserted into SWMM-5 to obtain time interval flow 

rate data.  The flow rate data was exported to Excel, which was used to simulate the water 

quality component.  The water quality component included nitrogen transformation mechanisms 

for each bioretention cell layer (unsaturated, IWSZ, and under-drain).  The parameters that were 

incorporated into the model are shown in Table 5.1.  Note, that if the parameters listed in this 

section contain the subscript “i”, then that parameter is subject to change with each time step.   

 

5.2.1.1 Hydraulics.  A generalized schematic of transport processes in a bioretention 

system is shown in Figure 5.1.  During the initial phase of a storm event, rainfall infiltrates into 

the ground.  Runoff is generated when the rainfall intensity exceeds the infiltration capacity of 

the soil.  As runoff discharges into the bioretention system ponding area, transport through the 

bioretention cell occurs.  Effluent either infiltrates into the ground or is discharged from the site 

through an under-drain pipe.  During high rainfall storm events, runoff can increase the water 

surface elevation in the ponding area to the point where it is conveyed over a weir (or over the 

bank of the pond) and is discharged from the site.  After a storm event, the water elevation 

gradually decreases as runoff continues to filter through the bioretention cell.  When the water 

elevation is above the pond bottom area, flow is a function of the hydraulic gradient, where a 

decrease in the hydraulic gradient results in a linear decrease in flow.  When the ponding area 

finally becomes empty, unsaturated drainage conditions begin to occur in the unsaturated layer.  
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During these conditions, flow is a function of moisture content, where a decrease in moisture 

content results in an exponential decrease in flow. 

 

To simplify the hydraulic component of the model, the volume of the ponding area and 

drainable porosity (Θs – Θr) of the media layers were grouped together into a single storage unit.  

This strategy required the following assumptions: (1) the initial runoff that enters the storage unit 

will “drop” into and fill the sand media pore volume (Nachabe, 2006); (2) a single rating curve 

that utilizes programming controls in SWMM-5 can be created to estimate flow during saturated 

or unsaturated conditions; and (3) headloss in the gravel-containing IWSZ and under-drain layers 

is negligible. 

 

 5.2.1.1.1 Saturated Drainage. Darcy’s Law was used to estimate flow under saturated 

conditions:   

        
       

 
                                                         (5.1) 

where, Q is the saturated flow rate (cm
3
/s), A is the filtration cell cross-sectional area (cm

2
), Ksat 

is the saturated hydraulic conductivity of the unsaturated layer (cm/s), h1 is the head elevation at 

the filtration node (cm), h2 is the head elevation at the filtration discharge node (cm), i is the time 

step node and L is the unsaturated layer depth (cm). A rating curve was generated to estimate 

saturated flow as a function of head (h1i – h2i).   

5.2.1.1.2 Unsaturated Drainage. During unsaturated drainage conditions, flow rate is a 

function of moisture content: 

            (Θ)[ ]                                                  (5.2a) 
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where, QU is the unsaturated flow rate (cm
3
/s), Kr(Θ) is the unsaturated layer relative hydraulic 

conductivity (unitless) and [1] is the unit hydraulic gradient which is equal to 1 during 

unsaturated drainage conditions.  Kr(Θ) was estimated from the classical unsaturated flow 

equations presented by Mualem (1976): 

   (Θ)  [  ]
                                                           (5.2b) 

and 

   
     

     
                                                               (5.2c) 

where, Se is the effective saturation in the unsaturated layer (unitless), α is the unsaturated flow 

power function constant (unitless), Θi is the current moisture content, Θr is the residual moisture 

content and Θs is the saturated moisture content (all unitless).  A mass balance was then used to 

relate Equation 5.2c with the modeled water elevation in the unsaturated layer. 

 

A plot-series relationship between drainage flux (qU, which is equal to KsatKr(Θ)) and Se 

for sand media was generated using the HYDRUS-1D Software Package.  During these 

simulations, the unsaturated layer was assumed to be initially saturated.  Ten day simulations 

were executed using varying unsaturated layer depths between 30 and 152 cm in increments of 

15.24 cm.  Values of α for each unsaturated layer depth were determined by minimizing the sum 

of squares residuals (SSR) between Equation 5.2a (QUi/A) and the HYDRUS-1D output velocity 

data.  Coefficient of determination (r
2
) values that compared Equation 5.2a and the HYDRUS-

1D output bottom drainage flux data were determined. 

 

SWMM-5 can only model a single rating curve between the bioretention cell node and 

the discharge outlet node; however, Equations 5.1 and 5.2a need to be characterized as ratings 
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curves between these nodes.  Therefore, program controls were utilized in SWMM-5 to allow the 

program to model a single rating curve based on saturated conditions, while accounting for the 

change in flow behavior that occurs during unsaturated flow conditions.  A new unifying 

equation that incorporated both saturated and unsaturated flow conditions with the aid of 

program controls is:  

         
       

 
                                                       (5.3a) 

where, 

  
  

 
                                                                  (5.3b) 

f is the flow rate multiplier used to estimate unsaturated flow under saturated conditions.  In 

Equation 5.3(a-b), f is equal to 1 when the water surface elevation is above the top elevation of 

the unsaturated layer; however, f is less than 1 and can change when the water surface elevation 

is below the top of the unsaturated layer. 

 

To find f, the hydraulic gradient term in Equation 5.3a was assumed to be approximately 

equal to the water elevation ratio (water elevation divided by unsaturated layer depth) in the 

unsaturated layer.  This allowed f to be estimated for a specific water elevation ratio value.  

Control rules were then constructed in SWMM-5 to adjust f for a given range of water elevation 

ratio values.  For example, when the water elevation ratio equals 0.5, the f value used represented 

the value for the range of water elevation ratio values between 0.4 and 0.6. 

 

5.2.1.2 Water Quality.  A general schematic of the water quality component of a 

bioretention system is shown in Figure 5.2.  To allow the model to calculate nitrogen loadings 

from the bioretention cell, the following information was required: (1) time interval flow data; 
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(2) event mean concentrations (EMC) of TN, dissolved oxygen (DO) and dissolved organic 

carbon (DOC); and (3) physical dimensions and media parameters for the unsaturated, IWSZ, 

and under-drain layers.  The first step of the water quality component included the conversion of 

influent TN concentrations to influent TKN concentrations (Equation 5.4a) and influent TN 

concentrations to influent NO3⁻   -N concentrations (Equation 5.4b).   

                                                                   (5.4a) 

                                                                   (5.4b) 

where, TNO is the influent total nitrogen concentration (mg/L), TKNO is the influent TKN 

concentration (mg/L), fTKN is the influent TKN fraction of TNO, NO3NO is the influent NO3⁻    -N 

concentration (mg/L) and fNO3N is the influent NO3⁻    -N fraction of TNO.  Appropriate fTKN and 

fNO3N values were extrapolated from land use data provided by Pitt et al. (2005). 

 

5.2.1.2.1 Unsaturated Layer.  Data from Davis et al. (2006) were used to develop 

equations that characterize nitrogen transformation in the unsaturated layer.  Davis et al. (2006) 

evaluated the TKN removal performance of two bioretention boxes of different depths (61 and 

91 cm).  Each box contained sandy loam soil, a mulch layer and Creeping juniper plants.  Total 

Kjeldahl Nitrogen removal performance was evaluated with varying hydraulic loading rates, 

storm event durations, influent pH values and influent TKN concentrations. 

 

The unsaturated layer was used as an overall representation of the nitrogen 

transformation processes that occur from the sand media, mulch and plants.  Due to the unknown 

factors (and their rates) that control many of these processes, nitrogen transformation processes 

were simplified and assumed to be caused by a pseudo-TKN-nitrification process.  Nitrification 
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of TKN was characterized by a first-order plug flow reactor (PFR) equation as shown in 

Equation 5.5.   

             
 (

    
      

)
                                                  (5.5) 

where, kn is the nitrification rate constant (hr
-1

), Vs is the pore volume of the unsaturated layer 

(cm
3
) and TKNI is the concentration of TKN that enters the IWSZ (mg/L).  Mean TKN removal 

efficiency data (as a function of detention time) from Davis et al. (2006) was extrapolated to 

estimate kn , by minimizing the SSR between Equation 5.5 and the data from Davis et al. (2006).  

The r
2
 value between Equation 5.5 and the data was then determined. 

 

Total Kjeldahl Nitrogen that was removed in Equation 5.5 was assumed to undergo 

complete nitrification as shown in Equation 5.6.   

                                                                 (5.6) 

where, NO3NI is the concentration of NO3⁻    -N that enters the IWSZ (mg/L).  Based on 

stoichiometry, DO was assumed to be removed during nitrification as shown in Equation 5.7. 

              (           )                                        (5.7) 

where, fO2C is the mass of DO consumed per mass of TKN removed during nitrification 

(mg/mg), O2O is the influent DO concentration (mg/L), and O2I is the concentration of DO that 

enters the IWSZ (mg/L).  The influent bio-available dissolved organic carbon concentration 

(bDOCO (mg/L)) was assumed to be a constant fraction of the influent dissolved organic carbon 

concentration (DOCO (mg/L)) as shown in Equation 5.8.   

                                                                 (5.8) 

where, fbDOC is the bDOC fraction of DOCO and bDOCI is the concentration of bDOC that enters 

the IWSZ (mg/L).  bDOC removal or production in the unsaturated layer was considered 



www.manaraa.com

85 
 

negligible, as competing elements either remove (e.g. sand filter or plants) or produce (e.g. 

mulch or plants) bDOC in the unsaturated layer. 

 

 5.2.1.2.2 IWSZ Layer.  Data from Chapters 3 and 4 were used to develop equations that 

characterize nitrogen transformation processes in the IWSZ layer.  Chapters 3 and 4 evaluated 

the NO3⁻     removal, TKN production and DOC production performance of IWSZ microcosms and 

three IWSZs columns of different depths (30, 45 and 60 cm).  Each IWSZ contained a 2:1 

(vol/vol) ratio of pea gravel and eucalyptus wood chips.  The influent and effluent of each 

constituent was evaluated under varying detention times, durations, flow regimes, influent NO3⁻     

concentrations and antecedent dry conditions. 

 

Based on the results provided in Chapters 3 and 4, NO3⁻     removal, TKN leaching and 

hydrolysis were assumed to occur in the IWSZ.  In addition, NO3⁻     removal was assumed to be 

caused by denitrification because a carbon source was available and low effluent DO 

concentrations were consistently measured in the IWSZs.  The IWSZ layer was modeled to allow 

hydrolysis, denitrification, TKN leaching and mixing to proceed in successive order for each 

time interval. 

 

The denitrification rate constant including limitation (k1 (hr
-1

)) (Equation 5.19a) from 

each time step was a function of DO inhibition and bDOC limitation:   

                                                                 (5.9a) 

where, 

    
   

        
                                                           (5.9b) 
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and 

       
                    ⁄

                    ⁄       
                                      (5.9c) 

where, bDOCf is the bDOC limitation factor, Of is the oxygen inhibition factor, k is the 

maximum denitrification rate constant (hr
-1

), KO2 is the oxygen inhibition coefficient for 

denitrification (mg/L),  t is the time step (s), bDOCH is the hydrolysis rate (mg/L-hr), KbDOC is 

the bDOC half-maximum rate concentration for denitrification (mg/L) and bDOCEi-1 is the 

bDOC concentration in the IWSZ from the previous time step (mg/L).  The following 

assumptions were used to develop Equations 5.9(a-c): (1) the maximum denitrification rate 

followed first-order kinetics; (2) Of was a function of the influent DO concentration (see Chapter 

3); (3) bDOCf was a function of bDOCE from the previous time step and DOCH; and (4) 

hydrolyzed organic carbon passed through biofilm and the end-product that enters the IWSZ 

pore water was biodegradable. 

 

Equations 5.10(a-b) were used to quantify how dispersion affects denitrification in the 

IWSZ.  The Peclet Number (Pe) was calculated as (see Chapter 4): 

         
 (

    

       
)
                                                    (5.10a) 

where, Red is the Reynolds Number dead constant, Re is the Reynolds Number (which is equal to 

vi𝜙d/ν), v is the IWSZ pore velocity (cm/s), d is the average diameter of media in the IWSZ 

(cm), 𝜙 is the porosity and ν is the kinematic viscosity (cm
2
/s).  The minimum allowable Pe 

value determined from Equation 5.10a was set to 0.5 (see Chapter 4).  The flow rate for each 

time interval (Qi) was obtained from the SWMM-5 modeling results and used to calculate vi.  

The remaining variables (d, A, 𝜙, ν, Red) were assumed to be constant.  The Pe for each time 
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interval was used to estimate the number of equivalent tanks-in-series (n) (presented by 

Crittenden et al., 2005) that are required to accurately model the IWSZ. 

   [    ⁄   (    ⁄ ) (         )]                                    (5.10b) 

  

The denitrification process was assumed to occur at steady-state at each time interval.  

The tanks-in-series equation (presented by Crittenden et al. (2005)) was used to calculate the 

concentration of NO3⁻    -N that enters the IWSZ after denitrification has occurred (NO3NR (mg/L):   

             [(      (        )⁄ )   ]                                (5.11) 

where, V is the IWSZ pore volume (cm
3
).  The sub-variable, NO3NR, is also the concentration of 

NO3⁻    -N that enters the IWSZ before mixing begins for each time step interval. 

 

 Based on experimental data that was obtained from Chapters 3 and 4, TKN production 

occurs in the IWSZ.  This was assumed to be caused by TKN stripping in the IWSZ.  In this 

model, TKN production was assumed to be linearly correlated with the IWSZ pore velocity, as 

shown below: 

                    ⁄                                                (5.12) 

Equation 5.12 calculates the concentration of TKN that enters the IWSZ after TKN production in 

the IWSZ has occurred (TKNR (mg/L)).  Data from Chapters 3 and 4 were used to calculate the 

mean TKN concentration that was produced for a given v.  Equation 5.12 was developed by 

minimizing the SSR between the data and a linear function that relates TKN production with v.  

Subsequently, the r
2
 value between TKN production data and Equation 5.12 was calculated.  The 

relationship between TKN production data and Equation 5.12 is shown in the results section of 

this study. 
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 Mass balance equations for NO3⁻    -N (Equation 5.13a), TKN (Equation 5.13b) and bDOC 

(Equation 5.13c) were used to calculate effluent concentrations that were discharged from the 

IWSZ at each time interval.   

       
                    

      
                                            (5.13a) 

      
                  

      
                                               (5.13b) 

       
                       ⁄           

      
                                 (5.13c) 

where, NO3NE is the concentration of NO3⁻    -N that enters the under-drain layer (mg/L), TKNE is 

the concentration of TKN that enters the under-drain layer (mg/L) and bDOCE is concentration 

of bDOC that enters the under-drain layer (mg/L).  Equations 5.13(a-c) calculate the effect of 

mixing after the reaction processes have been completed.  Since nitrogen speciation reactions do 

not occur during this stage (an exception is discussed later), mass balance equations for 

completely mixed flow reactors (CMFR) without reaction were used in Equations 5.13(a-b); 

however, Equation 13c includes hydrolysis within a CMFR.  Equations 5.13(a-c) were also used 

to calculate the NO3⁻    -N, TKN, and bDOC concentration in the IWSZ pore water for each time 

interval. 

 

Experimental data from Chapters 3 and 4 were used to calibrate the denitrification 

portion (Equations 5.9-5.11 and 5.13) of the IWSZ model.  Chapters 3 and 4 contain IWSZ grab 

sample measurements of flow rate and influent and effluent concentrations of NO3⁻    , DOC, and 

DO.  The unknown variables that were needed to calibrate the model were k and KbDOC.  The 

storm events that were used to either calibrate or validate the model are shown in Table 3.1 (see 

page 44).  Storm Events #4, 5, 6 and 10 were used for calibration, while the remaining storm 
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events were used for validation.  The SSR between storm event sampling data and model were 

used for comparison.  The SSR from each of the storm events were summed together and 

minimized with the best fit k and KbDOC values. 

 

The evolutionary solving method from Excel was used to calibrate k and KbDOC.  The 

boundary constraints of 0.01 to 10 hr
-1

 were used for k and the boundary constraints of 0.01 to 

100 mg/L were used for KbDOC.  The model was considered validated if the NO3⁻    removal 

efficiency of the model: (1) was within 10% of the experimental data for each storm event; and 

(2) conservatively estimated NO3⁻     removal efficiency when compared to experimental data. 

 

 5.2.1.2.3 Under-Drain Layer.  The under-drain layer was the last layer included in the 

model before runoff discharges into the under-drain pipe.  The effluent from the IWSZ layer is 

the influent for the under-drain layer.  The under-drain layer was modeled as a CMFR without 

reaction. 

 

5.2.1.2.4 Conditional Statements.  Additional expressions were included in the model to 

account for the expected change in biological behavior during low flow or dormant conditions 

(more details provided in Section 5.4.2.1).  Conditional statements were incorporated into the 

denitrification portion of the model with the assumptions that NO3⁻     will be completely removed 

when the detention time of the IWSZ layer exceeds 24 hours and when the detention time of the 

under-drain layer exceeds 48 hours.  In addition, the maximum allowable bDOCEi concentration 

was assumed to equal 100 mg/L. 
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5.2.1.3 Model Output.  The model output included effluent under-drain NO3⁻    -N 

(NO3ND) and TKN (TKND) concentrations for each time interval.  These data were used to 

compute input and output nitrogen speciation loads during a continuous simulation.  As an 

example, the discharged NO3⁻    -N input (Equation 5.14a) and output (Equation 5.14b) loads were 

calculated with the following equations: 

                ∑                                             (5.14a) 

                 ∑                                            (5.14b) 

where, QO is the unsaturated layer flow rate (L/s) and QD is the under-drain layer flow rate (L/s).  

Input and output loads for TN were then computed by summing the input and output loads of NO3⁻    

-N and TKN. 

 

5.2.2 Case Study 

 A hypothetical case study was modeled based on a highly urbanized two-acre site located 

in Tampa, Florida.  Three alternative bioretention system designs of varying IWSZ depths (30, 

45 and 60 cm) were evaluated, and are shown in Figure 5.3.  The 30 (Figure 5.3a), 45 (Figure 

5.3b) and 60 (Figure 5.3c) cm IWSZ bioretention cells encompassed the entire, two-thirds and 

one-half of the ponding bottom area, respectively.  However, the total IWSZ volume of each 

bioretention cell was equal.  Additional features that were used to design these systems are 

shown in Table 5.2. 

 

The systems were designed to comply with general stormwater permitting requirements 

for the State of Florida and included: detain and filter the first one inch of runoff from the 

contributing area; and discharge the post-development 25-yr, 24-hr maximum discharge rate at a 
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rate less than the pre-development 25-yr, 24-hr maximum discharge rate.  The systems were 

modeled using SWMM-5.  To comply with the general permitting requirements, the curve 

number method was selected for site infiltration and the dynamic wave method was used for 

routing. 

 

The TN and nitrogen speciation removal performance of the three bioretention system 

designs were evaluated in a year-long continuous simulation with 15-minute precipitation data 

from the Hillsborough River (Station 02304500) during 2012 (USGS, 2014).  During this 

simulation, the Green-Ampt (site hydraulic conductivity = 0.5 in/hr or 1.3 cm/hr) method was 

selected for infiltration and the dynamic wave method was selected for routing.  For practical 

purposes, the influent (rainfall that falls onto the surface of the site) TN EMCs were used.  The 

pre-development TN EMC was assumed to be 1.8 mg/L (mixed open space) and the pos-

development TN EMC was assumed to be 2.0 mg/L (mixed residential) (Pitt et al., 2005).  

Relatively high pre-development TN EMCs were used since the hypothetical site is located 

within an urbanized environment.  A TKN/NO3⁻   -N ratio of 2.33 was extrapolated from Pitt et al. 

(2005).   

 

A nitrogen speciation loading analysis was conducted for the bioretention cells and the 

sites.  The bioretention cell loading analysis evaluated nitrogen speciation removal performance 

only from cell processes.  The site loading analysis evaluated the overall nitrogen speciation 

removal performance from cell processes, site infiltration and weir overflow.  TN removal 

efficiencies of 100% were assumed for stormwater that infiltrated into the ground.  TN removal 

efficiencies of 0% were assumed for stormwater that was conveyed over the weir in the 
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bioretention system.  However, the nitrogen removal efficiency of runoff that discharged from 

the bioretention cell was assumed to vary according to the nitrogen loading model. 

 

5.3 Results 

5.3.1 Model Development 

 5.3.1.1 Hydraulics.  The plot-series relationship that compares qU with duration and Se 

for a 30 cm sand column depth with the use of HYDRUS is shown in Figure 5.4.  Within one 

hour, qu rapidly decreased from 25.8 to 1.2 cm/hr (Figure 5.4a) and the moisture content 

decreased from 1.00 to 0.61 (data not shown).  In addition, qU was observed to exponentially 

decrease with a decrease in Se, as shown in Figure 5.4b.  The Se of the 30 cm sand column was 

greater than 0.4 throughout the entire 10-day simulation.  Determined α values decreased with an 

increase unsaturated layer depth (Table 5.3).  Over the course of every simulation, Se was always 

greater than 0.25; however, final Se values decreased with an increase in the sand column depth 

(data not shown).  A high r
2
 (> 0.996) between qU and the HYDRUS-1D output data for all 

unsaturated layer depths was calculated. 

 

The estimated f values for specific water elevation ratios within the unsaturated layer are 

shown in Table 5.4.  A decrease in the water elevation ratio decreased the value of f.  The list of f 

values that were used in the SWMM-5 Control Rules for a given range of water elevation ratios 

within the unsaturated layer are also shown in Table 5.4. 

 

5.3.1.2 Water Quality.  The relationship between TKN removal efficiencies that were 

determined from the model (Equation 5.5) and from Davis et al. (2006) is shown in Figure 5.5.  
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TKN removal efficiency generally increased with increasing detention time in both the model 

and data; however, only a modest correlation (r
2
 = 0.63) was observed between Equation 5.5 

(that was used to calculate % TKN removal) and data reported in Davis et al. (2006). 

 

The relationship between TKN production and IWSZ pore velocity is shown in Figure 

5.6.  TKN production generally increased with an increase in IWSZ pore velocity; however, 

there was a variability of TKN production for each pore velocity.  The relationship between 

mean TKN production and Equation 5.13 (used to calculate TKN production) was modestly 

correlated (r
2
 = 0.67). 

 

 A comparison of the denitrification portion of the IWSZ model with the experimental NO3⁻   

-N data reported in Chapter 4 is shown in Figure 5.7.   In the model, close to 100% NO3⁻    removal 

efficiency was observed from the first sample taken, as shown in Figures 5.7(a-c).  After the 

initial pore water was discharged, NO3⁻    removal efficiency decreased.  Subsequently, NO3⁻    

removal efficiency increased as the detention time increased.  The model output data from SE 

#10 indicates that NO3⁻    removal efficiency decreases over the duration of a constant detention 

time storm event, as shown in Figure 5.7d.  The experimental data followed similar NO3⁻    removal 

efficiency patterns when compared to the model, as shown in Figures 5.7(a-d). 

 

 A summary of the IWSZ NO3⁻    removal efficiency modeling results and experimental 

results reported in Chapter 4 are shown in Table 5.5.  Overall, NO3⁻    removal efficiencies of 80% 

were calculated from the model and NO3⁻    removal efficiencies of 83% were calculated from the 

experimental data.  For all storm events and IWSZ columns, the model predicted NO3⁻    removal 
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efficiencies that were within 10% of the experimental results.  In addition, when compared to the 

experimental results the model conservatively predicted NO3⁻    removal efficiencies for every 

storm event and IWSZ column with the exception of SE #8. 

 

5.3.2 Case Study 

 SWMM-5 output volume results are shown in Table 5.6.  All of the sites with 

bioretention systems (30, 45 and 60 cm IWSZ cells) received the same volume of rainfall.  As 

expected, a greater volume of rainfall infiltrated during pre-development when compared to 

developed conditions.   The 30 cm IWSZ cell filtered the greatest amount of stormwater and the 

60 cm IWSZ cell filtered the least amount of stormwater. 

 

 The annual output loading results for NO3⁻   -N, TKN and TN are shown in Figure 5.8(a-c).  

The 30 cm IWSZ cell received slightly higher NO3⁻   -N loadings compared to the other cells, as 

shown in Figure 5.8a.  Input IWSZ NO3⁻   -N loads for the 30 cm IWSZ cell (10.7 kg/yr), the 45 cm 

IWSZ cell (9.6 kg/yr) and the 60 cm IWSZ cell (8.8 kg/yr) were observed to decrease with an 

increase in IWSZ cell depth.  The 60 cm IWSZ cell removed NO3⁻     most efficiently (88%) and 

removed the greatest mass of NO3⁻   -N (4.3 kg/year) compared to the other cells.  In contrast, 

IWSZ TKN input loadings were the highest for the 30 cm IWSZ cell, as shown in Figure 5.8b.  

In addition, the 30 cm IWSZ cell removed TKN most efficiently (46%) and removed the greatest 

mass of TKN (5.2 kg/year) compared to the other cells.  A TKN load increase between the IWSZ 

cell input and IWSZ cell output for the 30 cm IWSZ cell (0.62 kg/yr), the 45 cm IWSZ cell (0.64 

kg/yr) and the 60 cm IWSZ cell (0.66 kg/yr) were observed to increase with an increase in IWSZ 

cell depth.  Site TN removal efficiencies for the bioreention systems were observed to increase 



www.manaraa.com

95 
 

with a decrease in IWSZ cell depth, as shown in Figure 8c.  Similarly, cell TN removal 

efficiencies increased with a decrease in IWSZ cell depth.  The 30 cm IWSZ bioretention system 

(7.1 kg/year) was the only system that discharged lower TN loadings compared to pre-

development conditions (8.2 kg/yr). 

 

5.4 Discussion 

5.4.1 Hydraulics 

Data from the HYDRUS-1D drainage simulations can be used to understand how 

unsaturated flow rates exponentially decrease with an increase in drainage duration (Figure 5.4a) 

or a decrease in saturation (Figure 5.4b).  These phenomena are caused by capillary retention in 

the unsaturated layer, which creates a negative suction head relative to the direction of the flow.  

Since Se was always greater than zero during all of the 10-day simulations, water retained by 

capillary suction will likely reduce the available storage capacity of the unsaturated layer for the 

next storm event.  Lucas (2010) created a hydrologic model for bioretention systems in SWMM-

5 but did not include unsaturated flow processes in the unsaturated layer.  However, computed 

flow rates in continuous drainage simulations are a function of available storage capacity.  Data 

from the drainage simulations indicates that the available storage capacity of the unsaturated 

layer may be overestimated if unsaturated flow processes are not included in continuous 

simulation drainage models for bioretention systems. 

 

The determined values for α (Table 5.3) are useful in understanding how unsaturated 

layer depths affect unsaturated flow rates in the unsaturated layer.  When the depth of the 

unsaturated layer increases, α decreases.  This indicates that capillary suction plays a decreased 
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role in reducing flow rates for deeper unsaturated layers.  Therefore, if two unsaturated layer 

designs are equal in volume, the deeper sand layer will have a higher available storage capacity 

for the next storm event compared to a shallower unsaturated layer.  Different conclusions could 

be made if evaporation and plant uptake were also considered; however, the exclusion of these 

processes would result in a conservative bioretention system design.   

 

The determined values for f (Table 5.4) are useful in understanding the relationship 

between saturated and unsaturated flow regimes.  If the saturated flow equation (Equation 5.1a) 

was utilized when the modeled water elevation is below the top of the sand layer, then an 

overestimate of the output flow rate would occur.  The determined f values are also useful for 

designers in using program controls to model saturated and unsaturated flows through the 

unsaturated layer with one rating curve.  SWMM-5 utilizes an alternative approach to compute 

saturated/unsaturated flows in bioretention systems; however, the program cannot quantify how 

varying unsaturated layer depths affect flow rates (MSDGC, 2013).  The f values that were 

incorporated into SWMM-5 program controls (Table 5.5) are an approximation of the expected 

flow rate for a given value of Se.  This is because program controls can only be constructed for a 

given range of elevations (that are used to calculate Se) instead of using an actual formula.  

RECARGA would be more accurate in modeling unsaturated flows in bioretention systems; 

however, RECARGA models the bioretention ponding area as a vertical box (Atchison et al., 

2006), which may not be permissible in regions more prone to flooding, such as Florida. 
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5.4.2 Water Quality 

 5.4.2.1 Overview.  SWMM-5 uses a unique method in calculating water quality 

treatment processes (Rossman, 2010).  The program uses influent concentrations to calculate the 

concentration of a constituent after a reaction has occurred.  This reaction equation is calculated 

before any reacted water enters into the receiving node.  Once the reacted water enters the node, 

the program allows the node concentration to mix with the reacted concentration that enters the 

node.  The model presented in this study uses the same methodology.  The one exception is how 

bDOC concentrations are modeled, where the bDOC concentration from the previous time step is 

used in the treatment expression (this will be discussed later).  This exception is fairly simple to 

configure in the SWMM-5 treatment module since the program already calculates constituent 

concentrations for each node. 

 

In reality, reaction and mixing processes occur simultaneously in bioretention cells.  This 

poses a challenge in modeling nitrogen removal processes with the methodology utilized by 

SWMM-5 during low flow and/or dormant conditions.  For example, when the volume of runoff 

from a storm event is less than the IWSZ pore volume, runoff will enter and stay in the IWSZ 

until the next storm event.  This provides enough contact time for denitrifying bacteria to remove 

most or all of the NO3⁻     that was contained in the runoff.  Moreover, sloughed denitrifying 

bacteria, excess bDOC and low DO concentrations from the IWSZ will be transported to the 

under-drain layer through diffusive and/or low flow advective processes and create an 

environment that is suitable to promote denitrification.  After NO3⁻     is removed in the IWSZ, SO4
2
 ⁻  

reduction is observed (see Chapter 3), which may be due to biological sulfate reduction.  After 

SO4
2
 ⁻  is removed, an anaerobic environment can develop in the IWSZ that promotes the growth 
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of methanogenic bacteria (Rittman and McCarty, 2003).  Methanogenic bacteria growth may 

continue until the bDOC consumption rate equals bDOCH.  This would prevent bDOC 

concentrations in the IWSZ to continually increase over long dormant periods (one month or 

longer). 

 

Based on the example provided above, the conditional statements that were incorporated 

into the model were considered appropriate due to the following circumstances: (1) NO3⁻     was 

completely removed in IWSZ microcosms within six hours (see Chapter 3); (2) when the IWSZ 

detention time exceeds 24 hours, influent entering the IWSZ will likely remain in the IWSZ until 

the next storm event occurs; (3) low DO and high DOC concentrations were consistently 

measured in samples that were detained in the IWSZ prior to each storm event (see Chapter 4); 

(4) initial DOC concentrations that exited the IWSZ from the 30 day ADC storm event was less 

than the 16 day ADC storm event (see Chapter 4); and (5) initial DOC concentrations that exited 

from the 30 day ADC storm event were less than 100 mg/L (see Chapter 4). 

 

5.4.2.2 Processes in Each Layer.   

5.4.2.2.1 Unsaturated Layer.  Nitrogen transformation processes that are known to occur 

in the unsaturated layer include: immobilization, plant uptake, nitrification (Lucas and 

Greenway, 2011) and hydrolysis of organic nitrogen.  However, the major factors (and their 

rates) that control TKN transformation processes in the unsaturated layer are unknown.  Until 

these factors are better understood, a simplified approach to modeling nitrogen transformation 

mechanisms in the unsaturated layer is justifiable.  The model presented in this study used a 

‘lumped’ approach with the assumption that detention time was the only factor that controls 
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TKN transformations.  Consequently, only a modest correlation between Equation 6 and the 

experimental data from Davis et al. (2006) was observed when TKN removal efficiency was 

calculated as a function of detention time.  More research on this topic is warranted. 

 

The pseudo-TKN-nitrification model may conservatively estimate TKN removal 

efficiencies if mulch and/or high organic content media are excluded from unsaturated layer 

designs.  Barrett el al. (2013) evaluated the TKN removal performance of 12 different media 

types and/or cell configurations that presumably contained little organic matter (<0.5%) in the 

unsaturated layer.  The authors observed TKN removal efficiencies that were between 65 and 

94% for all media types and/or cell configurations.  However, the model presented in this study 

used data from Davis et al. (2006) that included an organic mulch layer in the unsaturated layer, 

where mean TKN removal efficiencies were observed to be between 12 and 83%. 

 

5.4.2.2.2 IWSZ Layer.  Total Kjeldahl Nitrogen production in the IWSZ most likely 

occurs from the leaching of organic media (Clark and Pitt, 2009); however, the controlling 

factors are relatively unknown.  This study assumed that the stripping of biofilm/organic media 

was the main factor that controlled TKN production in the IWSZ and that stripping was a 

function of pore velocity.  Therefore, data from Figure 5.6 was used to develop Equation 5.12.  

Even though TKN production and pore velocity were moderately correlated, there was high 

variability in the data.  This is likely due to factors other than pore velocity that influence TKN 

production, and additional research on this topic is warranted.  In addition, readers should be 

cautioned that data from Figure 5.6 was obtained from a permanently saturated IWSZ.  If the 

IWSZ is not permanently saturated, higher TKN leaching rates may occur (see Chapter 3). 
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Data from Figure 5.7 indicates that the denitrification portion of the IWSZ model is 

similar to the expected behavior of NO3⁻     removal in the IWSZ.  The effects of mixing (first two 

samples taken) and detention time (remaining samples taken) on NO3⁻     removal efficiency are 

clearly evident in Figures 5.7(a-c).  In addition, the decrease in bDOC concentrations resulted in 

decreased NO3⁻    removal efficiencies after multiple IWSZ pore flushes in both the model and the 

experimental data (Figure 5.7d).  The modeling results in Table 5.5 indicate that steady state 

equations can be used for each time interval to model the dynamics of NO3⁻     removal in the 

IWSZ.  For greater accuracy, models that include additional processes and use transient 

equations may be more appropriate than the denitrification model presented in this study.  Deng 

et al. (2012) developed a denitrification model that includes dispersion, mass transfer of NO3⁻    into 

the biofilm, microbial growth, oxygen inhibition, DOC substrate limitation and temperature; 

however, multiple rate constants from wastewater literature were assumed rather than calibrating 

the model with data from stormwater systems.  The denitrification model presented in this study 

used multiple rate constants that were calibrated from our prior research, which was carried out 

under controlled conditions with stormwater spiked to give NO3⁻     concentrations typical of urban 

runoff (see Chapters 3 and 4). 

 

5.4.3 Reactor Modeling.  A variety of reactors were utilized to characterize the hydraulic 

performance of each layer in the bioretention cell.  Pseudo-TKN-nitrification in the unsaturated 

layer was modeled as a PFR because the hydraulic efficiency was expected to be greater than the 

saturated layers (Nachabe, 1999).  Denitrification in the IWSZ was modeled as a non-ideal 

reactor since there is available data to support the mixing conditions in IWSZs (See Chapter 4).  

TKN production in the IWSZ was modeled as an empirical reactor because the actual processes 
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that control this phenomenon are not well understood.  Similarly, hydrolysis in the IWSZ was 

modeled as a CMFR because the process kinetics were assumed to be constant and there is 

limited data to quantify the actual processes that control hydrolysis.  The under-drain layer was 

modeled as a CMFR because reactions in this layer only occur on a conditional basis and 

SWMM-5 is already configured to model storage units as a CMFR.  Non-ideal reactors may be 

more accurate to approximate the actual hydraulic performance of each layer and/or process; 

however, simple reactor types were chosen to support the modeling capabilities of  SWMM-5.   

 

5.4.4 Case Study 

The hypothetical bioretention systems were designed with an impermeable liner that 

encompassed all layers in the cell, and the systems were located on a site with poorly-drained 

soils in an open drainage basin with a high water table.  The hydrological processes that were 

incorporated into the SWMM-5 model setup included: site infiltration, under-drain flow from the 

bioretention cell and weir flow from the ponding area.  The bioretention design and hydrological 

processes included in this case study do not necessarily represent all bioretention designs and 

processes that should be used for all regions and environmental conditions.  The case study only 

represents the minimum number of processes that are expected to occur in bioretention systems 

with an IWSZ.  At the designers’ discretion, additional processes can be incorporated into the 

SWMM-5 model to better represent the site characteristics for each unique site and/or 

bioretention system design.  Additional processes that could be incorporated may include: on-site 

depressional storage, evaporation, infiltration from the ponding area, and percolation from the 

bioretention cell layers. 
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The SWMM-5 output volume results show how the volume of stormwater treated is 

controlled by the dimensions of the bioretention cell.  However, the case study results revealed 

that only a 2% increase of untreated runoff volume occurs when the bioretention cell footprint 

area was reduced by 50%. This aspect is important for designers who need to comply with 

volume-based treatment and attenuation requirements.  Based on these results, the designer 

would likely select the 60 cm IWSZ cell from a materials and cost perspective, since only a small 

increase in untreated runoff will occur compared to the other cells that have a larger cell area.  

However, if the bioretention cell area is too small, a larger increase in untreated runoff volume 

will occur.  In this case, a larger bioretention cell area may be necessary to comply with 

treatment and attenuation regulations. 

 

The annual output loading results (Figures 5.8(a-c)) are useful in understanding how 

nitrogen transformation processes affected nitrogen loadings.  Nitrification occurs as runoff 

passes through the unsaturated layer and discharges into the IWSZ.  This causes a reduction in 

TKN loadings (Figure 5.8b) and an increase of NO3⁻     (Figure 5.8a) loadings into the IWSZ.  The 

30 cm IWSZ cell discharged the greatest NO3⁻     loadings and the least TKN loadings into the 

IWSZ.  This was likely due to the larger sand layer volume that was used in the 30 cm IWSZ cell 

design.  When runoff passes through the IWSZ and discharges from the cell, denitrification and 

TKN production occurs.  At this location, denitrification reduced NO3⁻     loadings (Figure 5.8a) and 

TKN production increased TKN loadings (Figure 5.8b).  The greatest NO3⁻     loadings were 

removed in the 60 cm IWSZ, possibly due to lower dispersion in this cell when compared to the 

30 and 45 cm IWSZ cells (see Chapter 4).  Even though the 60 cm IWSZ cell removed higher 

NO3⁻     loadings, the 30 cm IWSZ cell removed the highest TN loadings for the site and the cell 
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(Figure 5.8c).  This may have occurred because: (1) more TKN loadings were removed in the 30 

cm IWSZ cell (Figure 5.8b) when compared to NO3⁻    -N loadings that were removed in the 60 cm 

IWSZ cell (Figure 5.8a); and (2) the 30 cm IWSZ cell treated a greater volume of runoff than the 

60 cm IWSZ cell (Table 5.6).  Since the 30 cm IWSZ bioretention system discharged less TN 

than the pre-development conditions, the hypothetical development could use this system to meet 

nitrogen loading permitting requirements. 

 

5.5 Conclusions 

 Increased nutrient control standards for stormwater runoff are being implemented 

throughout the United States.  However, comprehensive models that estimate nutrient loadings 

from stormwater treatment systems are unavailable.  In this study, a quantitative nitrogen loading 

model was developed for modified bioretention systems.  Experimental and programming 

simulation data were used to develop and calibrate process-driven equations that characterize the 

hydraulic and water quality components of the model.  The processes incorporated into the 

model include: unsaturated flow, saturated flow, pseudo-nitrification, denitrification and TKN 

leaching.  A new unifying equation was developed to approximate saturated and unsaturated 

flows in SWMM-5.  An in-depth analysis revealed that unsaturated flow processes reduce the 

available storage capacity of the unsaturated layer and that unsaturated flow processes should be 

included in multiple storm event simulation studies.  Denitrification in the IWSZ was validated 

with experimental data.  Other modeling results revealed that TKN removal in the unsaturated 

layer is positively correlated with detention time and TKN production in the IWSZ is positively 

correlated with pore velocity; however, additional research that identifies the factors (and rates) 

that control these processes are recommended.  A hypothetical case study was modeled in 
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SWMM-5 to assess the nitrogen removal performance of various bioretention designs that have 

equal IWSZ volumes.  The results indicate that bioretention systems with taller IWSZs remove 

greater NO3⁻     loadings; however, systems with shorter IWSZs remove greater TKN and TN 

loadings.  The model presented in this study provides a tool for designers to quantify nitrogen 

loadings as a function of the bioretention system design. 

 

Table 5.1. Terminology and parameters used to develop the nitrogen loading model. 

Symbol Name Value Units Reference 

bDOCH hydrolysis rate 0.28 mg/L-hr Chapter 3 

fbDOC bDOC fraction of DOCO 0.1 mg/mg Assumed 

fTKN Influent TKN fraction of TNO 0.7 mg/mg Collins et al. (2010) 

fO2C mass of DO consumed per mass of TKN 

removed during nitrification 

3.96 mg/mg Rittman and 

McCarty (2005) 

fNO3N Influent NO3⁻    -N fraction of TNO 0.7 mg/mg Collins et al. (2010) 

i Time step node - -  

k Denitrification rate constant 4.46 hr
-1 

This study 

kn Nitrification rate constant 0.19 hr
-1 

This study 

KbDOC bDOC half-maximum rate concentration 

for denitrification 

0.61 mg/L This study 

KO2 Oxygen inhibition coefficient for 

denitrification 

2.18 mg/L Chapter 3 

Red Re dead constant 10
-6

 - Chapter 4 

 t Time step 180 s This study 

Θr Residual moisture content for sand 0.045 - Loheide et al. 

(2005) 

Θs Saturated moisture content for sand 0.43 - Loheide et al. 

(2005) 

𝜙 IWSZ porosity 0.42 - Chapter 3 

ν Kinematic viscosity 1.004 x 

10
-2 

cm
2
/s Crittenden et al. 

(2005) 
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Table 5.2. Main parameters used to design the three bioretention systems. 

Parameter U.S. Units SI Units 

CNpervious 80 80 

25 yr, 24 hr rainfall depth 8.0 in 20.3 cm 

Bottom of pond area 9216 ft
2 

856 m
2 

Top of pond area 12800 ft
2 

1189 m
2 

Pond depth 2 ft 61 cm 

Freeboard 0.5 ft 15 cm 

Weir invert height relative to pond bottom 0.75 ft 22.9 cm 

Actual impervious area 70% 70% 

Equivalent impervious area 75% 75% 

 

 

Table 5.3. Determined values of α from Equation 3 for a specific unsaturated layer depth. 

Unsaturated layer depth (cm) α Mean square residual r
2 

30 5.5 0.18 0.999 

46 4.6 0.26 0.999 

61 4.2 0.24 0.999 

76 4.3 0.19 0.999 

91 3.9 0.39 0.998 

107 3.8 0.40 0.997 

122 3.7 0.42 0.997 

137 3.7 0.41 0.997 

152 3.7 0.42 0.997 

 

 

Table 5.4. Estimated f values for specific water elevation ratio values within the unsaturated 

layer and the range of water elevation ratio values within the sand layer used in the SWMM-5 

Control Rules for a given f value. 

Water elevation ratio values f Water elevation ratio values used for a given f value 

0.1 0.00003 0 – 0.2 

0.2 0.0007 - 

0.3 0.004 0.2 – 0.4 

0.4 0.016 - 

0.5 0.04 0.4 – 0.6 

0.6 0.10 - 

0.7 0.20 0.6 – 0.8 

0.8 0.37 - 

0.9 0.62 0.8 – 1.0 

1.0 or greater 1.00 1.0 or greater 
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Table 5.5. NO3⁻    removal efficiency experimental and modeling results for the eleven storm 

events analyzed.  Storm event #11 was not included in the overall results calculations.  Sum of 

squares residuals (SSR) were calculated in NO3⁻    -N mg/L. 

  Experimental Model Difference 

Storm 

event 

Influent as 

NO3⁻    -N 

(mg/L) 

60 

cm 

45 

cm 

30 

cm 

60 

cm 

45 

cm 

30 

cm 
Mean 

Standard 

deviation 
SSR 

1 1.96 83 86 82 82 81 78 3.2 2.55 0.99 

2 1.98 97 97 89 90 88 86 6.7 3.15 0.61 

3 2.00 97 96 90 87 86 83 8.7 1.74 0.69 

4 1.92 96 97 89 89 88 85 6.6 2.54 0.41 

5 1.87 87 86 80 86 84 81 0.7 1.84 0.79 

6 3.64 88 89 78 87 85 82 0.2 4.03 1.19 

7 2.22 61 62 60 61 61 60 0.5 0.52 1.19 

8 1.94 59 58 59 63 63 62 -4.3 0.93 0.71 

9 2.04 97 97 88 88 86 84 7.9 3.36 0.72 

10 1.91 90 80 73 77 77 74 4.7 7.18 0.47 

11 2.02 86 84 73 - - - - - - 

Overall 2.15 85 85 79 81 80 78 3.2 2.02 - 

Total 

overall 
2.15 83 80 3.2 4.68 7.76 

 

 

Table 5.6. Computed SWMM-5 output volumes (kL) from pre-development conditions and from 

the bioretention systems with IWSZ depths of 30, 45 and 60 cm. 

System Rainfall Infiltration Weir
a 

Bioretention cell 

Pre-development 9,250 4,706 4,544
 

- 

30 cm IWSZ 9,250 1,015 57 8,172 

45 cm IWSZ 9,250 1,015 140 8,100 

60 cm IWSZ 9,250 1,015 223 8,017 
a 
Values represent surface runoff from the site or overflow  
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Figure 5.1. General schematic showing how rainfall is transported from a site that includes a 

modified bioretention system.  

 

 

 

Figure 5.2. A general schematic of the transformations that were included in the water quality 

component. 
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Figure 5.3. Bioretention systems analyzed in the case study.  All systems were designed to have 

equivalent IWSZ volumes, unsaturated layer depths, under-drain layer depths, pond dimensions 

and weir dimensions. 
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Figure 5.4. Plot-series relationship comparing qU with duration (a) and Se (b) for an initially 

saturated sand column with a depth of 30 cm. 
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Figure 5.5. The relationship between TKN removal efficiency data from Equation 6 and mean 

TKN removal efficiency data from Davis et al. (2006).  Dotted line represents the trend line. 

 

 

 

 

Figure 5.6. IWSZ experimental data taken during the study from Chapters 3 and 4.  The dotted 

line represents the linear relationship between TKN increase and pore velocity.  Error bars 

represent the standard deviation. 
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Figure 5.7. 30 cm column data and modeling results for the 8 day ADC base case (SE #4, Fig. 

7a), 0 day ADC (SE #5, Fig. 7b), higher influent NO3⁻     concentration (SE #6, Fig. 7c and constant 

2 hour detention time (SE #10, Fig. 7d) storm events. 
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Figure 5.8. Annual output loading results for NO3⁻   -N (a), TKN (b) and TN (c) from pre-

development conditions and from the 30, 45 and 60 cm IWSZ bioretention systems during the 

case study.  Values shown above the columns represent overall mass removal efficiency. 
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Chapter 6: 

Conclusions 

 

A bioretention system is an innovative stormwater treatment technology that utilizes a 

variety of physical, chemical and biological transformation processes to treat stormwater runoff.  

Many of these processes are well known; however, the driving factors (detention time, cell 

dimensions, etc.) that affect these processes are not well understood.  This prevents designers 

from having the ability to appropriately size bioretention systems for nutrient removal.  Without 

scientifically-based design guidelines, the following issues will likely impede the 

implementation of bioretention systems: (1) regulators are less certain that bioretention systems 

will reduce nutrient loadings to downstream surface waters; (2) previous design guidelines be 

more expensive than is necessary; and (3) a model that accurately predicts the nitrogen removal 

performance of bioretention systems is unavailable. 

 

Conventional bioretention systems have been shown to remove NO3⁻     poorly.  However, 

these systems can be modified to include an IWSZ to promote denitrification.  This dissertation 

focused on understanding: (1) how biological processes affect NO3⁻     removal; (2) how IWSZ 

dimensions affect NO3⁻     removal; and (3) how a model can be developed to quantify NO3⁻     

removal in the IWSZ.  This research contains guidelines that can be used by designers and 

regulators to decide how IWSZs in bioretention systems should be designed to meet the 

hydrologic and nitrogen loading goals for a development. 
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Environmental conditions play a significant role in promoting denitrification in the 

IWSZ.  These conditions include: the presence of denitrifying bacteria, anaerobic conditions and 

the bio-availability of carbon-containing media in the IWSZ.  Without these conditions, NO3⁻     

removal will likely occur at a slow to negligible rate.  The results from the un-acclimated 

microcosm experiments indicated that an acclimation period is necessary before denitrifying 

bacteria respire NO3⁻     at a high rate.  In addition, NO3⁻     removal rates were faster during anaerobic 

compared to aerobic conditions.  Another interesting finding was how the hydrolysis of carbon-

containing media affects NO3⁻     removal.  Hydrolysis increases dissolved organic carbon 

concentrations in the IWSZ pores which enable denitrifying organisms to consume NO3⁻     at a 

higher rate.  Hydrolysis occurs at a faster rate in un-saturated as compared to saturated IWSZs.  

However, an increase in hydrolysis rates reduces the lifespan of organic media to provide a 

carbon source.  In addition, high TKN production rates in unsaturated compared to saturated 

IWSZs will reduce the benefits of incorporating an IWSZ to reduce nitrogen loadings. 

 

The physical dimensions of the IWSZ can affect NO3⁻     removal efficiencies.  This 

phenomenon appears to be caused by dispersion.  When IWSZs are operated at equal detention 

times, taller IWSZs will remove NO3⁻     at a faster rate than shorter IWSZs.  Shorter IWSZs are 

operated with slower pore velocities where dispersive processes play a more pronounced role in 

transporting NO3⁻     through the IWSZ; however, if IWSZs are operated with lower detention times 

(< 1 hr), dispersive processes may not have a major effect on NO3⁻     removal.  The effects of 

dispersion can also be compounded in IWSZs.  When IWSZs are operated under conditions 

similar to plug flow reactors (low dispersion), denitrifying bacteria have more time to respire  
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NO3⁻  . .  In this dissertation, a model was developed to estimate the Peclet Number as a 

function of the Reynolds Number; however, other media types and flow rates would need to be 

evaluated to further validate the model.  Future research that investigates how dispersion affects 

biological systems, such as IWSZs, is recommended. 

 

Large data sets from the experimental portion of this research were used to develop a 

model that can predict NO3⁻     removal in IWSZs.  However, a model that predicts TN loadings 

from bioretention systems would be more useful for application.  Additional equations pertaining 

to other nitrogen transformation (nitrification and TKN leaching) and hydraulic (saturated and 

unsaturated flow) processes were developed and combined with data from Davis et al. (2006) 

and the denitrification model to predict TN loadings from bioretention systems.  Even though 

modest correlations between the model (nitrification and TKN stripping portion) and the 

extrapolated data sets were calculated, additional research is recommended to verify the factors 

and kinetics that control nitrogen transformation processes other than NO3⁻     removal in the IWSZ.  

The unsaturated flow equation that was presented in this dissertation is a simplified way to 

quantify unsaturated flows in the sand layer.  This unsaturated flow equation is particularly 

useful because numerous hydrologic/hydraulic/water quality processes need to be simplified to 

develop a user-friendly nitrogen loading model for bioretention systems.      

 

The model that was developed from this dissertation will allow designers to predict TN 

loadings from various bioretention systems that are designed under various hydrological 

conditions.  In terms of stormwater quality modeling for site development projects, this model is 

highly advanced.  However, many processes and kinetics that occur in stormwater treatment 
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systems are poorly understood.  Through this rationale, it was prudent to develop a simple model 

that can also model the dynamic behavior of bioretention systems.  The terms “simplified” and 

“assumed” were used thoroughly in this dissertation.  These terms were used to satisfy the 

concerns of readers with a background in only environmental engineering or only water 

resources engineering, since more complex models in other specialized areas (e.g., wastewater 

treatment) may be more accurate for one particular aspect of the model. 

 

This dissertation advances our knowledge of how NO3⁻     is removed in the IWSZ of 

bioretention systems.  Even though this research provides solutions to many issues, more 

research is necessary to understand how bioretention systems should be designed to improve 

water quality.  In broader terms, similar research should be conducted for other stormwater 

treatment systems (e.g., wet detention, dry retention) to provide designers a greater 

understanding in selecting the most beneficial system for each unique site.  Until then, our goal 

of designing sustainable stormwater management systems to meet the needs of our environment, 

economy and society is still a work in progress. 
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Appendix A: 

 

Microcosm Study Data 

 

 

 

Table A.1. Acclimated anoxic microcosm TN data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 2.11 2.03 2.37 2.17 0.18 

Sand 6 2.38 2.15 2.44 2.32 0.15 

Gravel 0 2.11 2.03 2.37 2.17 0.18 

Gravel 6 2.24 2.15 2.27 2.22 0.06 

Wood 0 2.11 2.03 2.37 2.17 0.18 

Wood 6 0.29 0.31 0.33 0.31 0.02 

Tire 0 2.11 2.03 2.37 2.17 0.18 

Tire 6 0.44 0.39 0.46 0.43 0.04 

Sand-Wood 0 2.20 2.11 2.24 2.18 0.07 

Sand-Wood 6 0.61 0.65 0.73 0.67 0.06 

Gravel-Wood 0 2.20 2.11 2.24 2.18 0.07 

Gravel-Wood 6 0.34 0.39 0.42 0.38 0.04 

Sand-Tire 0 2.20 2.11 2.24 2.18 0.07 

Sand-Tire 6 0.79 0.64 0.92 0.79 0.14 

Gravel-Tire 0 2.20 2.11 2.24 2.18 0.07 

Gravel-Tire 6 0.35 0.35 0.45 0.39 0.06 
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Table A.2. Acclimated anoxic microcosm DOC data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 2.73 2.70 3.22 2.88 0.29 

Sand 6 4.10 2.92 3.34 3.45 0.60 

Gravel 0 2.73 2.70 3.22 2.88 0.29 

Gravel 6 3.33 2.68 3.05 3.02 0.33 

Wood 0 2.73 2.70 3.22 2.88 0.29 

Wood 6 8.21 6.23 6.00 6.81 1.22 

Tire 0 2.73 2.70 3.22 2.88 0.29 

Tire 6 8.01 5.83 5.60 6.48 1.33 

Sand-Wood 0 2.85 2.96 3.16 2.99 0.16 

Sand-Wood 6 5.73 4.36 3.75 4.61 1.01 

Gravel-Wood 0 2.85 2.96 3.16 2.99 0.16 

Gravel-Wood 6 4.61 3.75 3.83 4.06 0.48 

Sand-Tire 0 2.85 2.96 3.16 2.99 0.16 

Sand-Tire 6 4.99 4.76 3.59 4.45 0.75 

Gravel-Tire 0 2.85 2.96 3.16 2.99 0.16 

Gravel-Tire 6 4.30 3.62 3.85 3.92 0.35 

 

 

 

Table A.3. Acclimated anoxic microcosm DO data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 0.99 1.00 1.00 1.00 0.01 

Sand 6 0.80 1.02 1.08 0.97 0.15 

Gravel 0 0.99 1.00 1.00 1.00 0.01 

Gravel 6 0.24 0.83 0.25 0.44 0.34 

Wood 0 0.99 1.00 1.00 1.00 0.01 

Wood 6 0.38 1.05 0.06 0.50 0.51 

Tire 0 0.99 1.00 1.00 1.00 0.01 

Tire 6 0.78 0.36 0.19 0.44 0.30 

Sand-Wood 0 0.99 1.00 1.00 1.00 0.01 

Sand-Wood 6 0.66 0.46 0.17 0.43 0.25 

Gravel-Wood 0 0.99 1.00 1.00 1.00 0.01 

Gravel-Wood 6 0.44 0.28 1.04 0.59 0.40 

Sand-Tire 0 0.99 1.00 1.00 1.00 0.01 

Sand-Tire 6 0.42 0.46 0.56 0.48 0.07 

Gravel-Tire 0 0.99 1.00 1.00 1.00 0.01 

Gravel-Tire 6 0.26 0.37 0.18 0.27 0.10 
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Table A.4. Acclimated anoxic microcosm pH data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 7.79 8.13 7.88 7.93 0.18 

Sand 6 7.10 7.53 8.05 7.56 0.48 

Gravel 0 7.79 8.13 7.88 7.93 0.18 

Gravel 6 7.57 7.70 7.93 7.73 0.18 

Wood 0 7.79 8.13 7.88 7.93 0.18 

Wood 6 6.95 7.06 7.03 7.01 0.06 

Tire 0 7.79 7.13 7.88 7.60 0.41 

Tire 6 7.55 7.67 7.53 7.58 0.08 

Sand-Wood 0 7.85 8.13 8.06 8.01 0.15 

Sand-Wood 6 7.36 7.21 7.10 7.22 0.13 

Gravel-Wood 0 7.85 8.13 8.06 8.01 0.15 

Gravel-Wood 6 7.33 7.80 7.46 7.53 0.24 

Sand-Tire 0 7.85 8.13 8.06 8.01 0.15 

Sand-Tire 6 7.70 7.68 7.41 7.60 0.16 

Gravel-Tire 0 7.85 8.13 8.06 8.01 0.15 

Gravel-Tire 6 7.70 7.36 7.92 7.66 0.28 
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Table A.5. Acclimated anoxic microcosm NH4
+
   -N data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 0.02 0.01 0.04 0.02 0.02 

Sand 1 0.00 0.01 0.00 0.00 0.01 

Sand 2 0.00 0.01 0.00 0.00 0.01 

Sand 4 0.00 0.01 0.00 0.00 0.01 

Sand 6 0.00 0.01 0.00 0.00 0.01 

Gravel 0 0.02 0.01 0.04 0.02 0.02 

Gravel 1 0.00 0.01 0.00 0.00 0.01 

Gravel 2 0.00 0.01 0.00 0.00 0.01 

Gravel 4 0.00 0.01 0.00 0.00 0.01 

Gravel 6 0.00 0.01 0.00 0.00 0.01 

Wood 0 0.02 0.01 0.04 0.02 0.02 

Wood 1 0.00 0.01 0.00 0.00 0.01 

Wood 2 0.00 0.01 0.00 0.00 0.01 

Wood 4 0.00 0.01 0.00 0.00 0.01 

Wood 6 0.00 0.01 0.00 0.00 0.01 

Tire 0 0.02 0.01 0.04 0.02 0.02 

Tire 1 0.00 0.01 0.00 0.00 0.01 

Tire 2 0.00 0.01 0.00 0.00 0.01 

Tire 4 0.00 0.01 0.00 0.00 0.01 

Tire 6 0.00 0.01 0.02 0.01 0.01 

Sand-Wood 0 0.00 0.01 0.03 0.01 0.02 

Sand-Wood 1 0.00 0.01 0.00 0.00 0.01 

Sand-Wood 2 0.00 0.01 0.00 0.00 0.01 

Sand-Wood 4 0.00 0.01 0.00 0.00 0.01 

Sand-Wood 6 0.00 0.01 0.00 0.00 0.01 

Gravel-Wood 0 0.00 0.01 0.03 0.01 0.02 

Gravel-Wood 1 0.00 0.01 0.00 0.00 0.01 

Gravel-Wood 2 0.00 0.01 0.00 0.00 0.01 

Gravel-Wood 4 0.00 0.01 0.00 0.00 0.01 

Gravel-Wood 6 0.00 0.01 0.18 0.06 0.10 

Sand-Tire 0 0.00 0.01 0.03 0.01 0.02 

Sand-Tire 1 0.00 0.01 0.00 0.00 0.01 

Sand-Tire 2 0.00 0.01 0.00 0.00 0.01 

Sand-Tire 4 0.00 0.01 0.00 0.00 0.01 

Sand-Tire 6 0.00 0.01 0.00 0.00 0.01 

Gravel-Tire 0 0.00 0.01 0.03 0.01 0.02 

Gravel-Tire 1 0.00 0.01 0.02 0.01 0.01 

Gravel-Tire 2 0.00 0.01 0.00 0.00 0.01 

Gravel-Tire 4 0.00 0.01 0.00 0.00 0.01 

Gravel-Tire 6 0.00 0.01 0.15 0.05 0.08 
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Table A.6. Acclimated anoxic microcosm NO2
⎺   -N data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 0.00 0.00 0.01 0.00 0.01 

Sand 1 0.00 0.00 0.01 0.00 0.01 

Sand 2 0.00 0.00 0.01 0.00 0.01 

Sand 4 0.00 0.00 0.00 0.00 0.00 

Sand 6 0.00 0.00 0.01 0.00 0.01 

Gravel 0 0.00 0.00 0.01 0.00 0.01 

Gravel 1 0.00 0.00 0.00 0.00 0.00 

Gravel 2 0.00 0.00 0.01 0.00 0.01 

Gravel 4 0.00 0.00 0.01 0.00 0.01 

Gravel 6 0.01 0.00 0.01 0.01 0.01 

Wood 0 0.00 0.00 0.01 0.00 0.01 

Wood 1 0.07 0.09 0.14 0.10 0.04 

Wood 2 0.07 0.17 0.23 0.16 0.08 

Wood 4 0.01 0.08 0.07 0.05 0.04 

Wood 6 0.01 0.00 0.01 0.01 0.01 

Tire 0 0.00 0.00 0.01 0.00 0.01 

Tire 1 0.13 0.04 0.03 0.07 0.06 

Tire 2 0.03 0.01 0.01 0.02 0.01 

Tire 4 0.01 0.00 0.01 0.01 0.01 

Tire 6 0.01 0.00 0.02 0.01 0.01 

Sand-Wood 0 0.01 0.00 0.01 0.01 0.01 

Sand-Wood 1 0.01 0.01 0.01 0.01 0.00 

Sand-Wood 2 0.04 0.02 0.03 0.03 0.01 

Sand-Wood 4 0.04 0.03 0.03 0.03 0.01 

Sand-Wood 6 0.03 0.03 0.02 0.03 0.01 

Gravel-Wood 0 0.01 0.00 0.01 0.01 0.01 

Gravel-Wood 1 0.05 0.09 0.10 0.08 0.03 

Gravel-Wood 2 0.11 0.15 0.17 0.14 0.03 

Gravel-Wood 4 0.04 0.12 0.17 0.11 0.07 

Gravel-Wood 6 0.01 0.02 0.05 0.03 0.02 

Sand-Tire 0 0.01 0.00 0.01 0.01 0.01 

Sand-Tire 1 0.10 0.09 0.02 0.07 0.04 

Sand-Tire 2 0.01 0.17 0.04 0.07 0.09 

Sand-Tire 4 0.12 0.12 0.04 0.09 0.05 

Sand-Tire 6 0.00 0.05 0.02 0.02 0.03 

Gravel-Tire 0 0.01 0.00 0.01 0.01 0.01 

Gravel-Tire 1 0.04 0.04 0.03 0.04 0.01 

Gravel-Tire 2 0.04 0.03 0.04 0.04 0.01 

Gravel-Tire 4 0.03 0.02 0.02 0.02 0.01 

Gravel-Tire 6 0.00 0.00 0.01 0.00 0.01 
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Table A.7. Acclimated anoxic microcosm NO3⁻   -N data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 1.90 1.92 2.06 1.96 0.09 

Sand 1 2.15 1.95 1.99 2.03 0.11 

Sand 2 2.10 1.93 1.97 2.00 0.09 

Sand 4 2.19 1.91 1.45 1.85 0.37 

Sand 6 1.91 1.91 2.01 1.94 0.06 

Gravel 0 1.90 1.92 2.06 1.96 0.09 

Gravel 1 2.16 1.95 2.01 2.04 0.11 

Gravel 2 2.11 1.95 1.99 2.02 0.08 

Gravel 4 2.15 1.97 2.00 2.04 0.10 

Gravel 6 2.16 1.94 2.03 2.04 0.11 

Wood 0 1.90 1.92 2.06 1.96 0.09 

Wood 1 1.01 0.98 0.90 0.96 0.06 

Wood 2 0.41 0.46 0.40 0.42 0.03 

Wood 4 0.02 0.05 0.03 0.03 0.02 

Wood 6 0.00 0.00 0.00 0.00 0.00 

Tire 0 1.90 1.92 2.06 1.96 0.09 

Tire 1 0.43 0.42 0.50 0.45 0.04 

Tire 2 0.03 0.04 0.06 0.04 0.02 

Tire 4 0.00 0.00 0.00 0.00 0.00 

Tire 6 0.01 0.00 0.00 0.00 0.01 

Sand-Wood 0 1.90 1.92 1.94 1.92 0.02 

Sand-Wood 1 1.52 1.45 1.55 1.51 0.05 

Sand-Wood 2 1.16 1.17 1.23 1.19 0.04 

Sand-Wood 4 0.60 0.65 0.68 0.64 0.04 

Sand-Wood 6 0.19 0.37 0.33 0.30 0.09 

Gravel-Wood 0 1.90 1.92 1.94 1.92 0.02 

Gravel-Wood 1 1.06 1.02 1.21 1.10 0.10 

Gravel-Wood 2 0.49 0.59 0.80 0.63 0.16 

Gravel-Wood 4 0.02 0.14 0.28 0.15 0.13 

Gravel-Wood 6 0.00 0.00 0.02 0.01 0.01 

Sand-Tire 0 1.90 1.92 1.94 1.92 0.02 

Sand-Tire 1 1.28 1.29 1.52 1.36 0.14 

Sand-Tire 2 0.78 0.80 1.13 0.90 0.20 

Sand-Tire 4 0.24 0.23 0.54 0.34 0.18 

Sand-Tire 6 0.01 0.13 0.17 0.10 0.08 

Gravel-Tire 0 1.90 1.92 1.94 1.92 0.02 

Gravel-Tire 1 1.23 1.00 1.17 1.13 0.12 

Gravel-Tire 2 0.74 0.64 0.77 0.72 0.07 

Gravel-Tire 4 0.22 0.19 0.25 0.22 0.03 

Gravel-Tire 6 0.00 0.00 0.02 0.01 0.01 
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Table A.8. Acclimated anoxic microcosm Org-N data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 0.9 0.10 0.26 0.42 0.42 

Sand 6 0.47 0.23 0.42 0.37 0.13 

Gravel 0 0.19 0.10 0.26 0.18 0.08 

Gravel 6 0.08 0.21 0.23 0.17 0.08 

Wood 0 0.19 0.10 0.26 0.18 0.08 

Wood 6 0.28 0.30 0.31 0.30 0.02 

Tire 0 0.19 0.10 0.26 0.18 0.08 

Tire 6 0.42 0.38 0.42 0.41 0.02 

Sand-Wood 0 0.30 0.18 0.27 0.25 0.06 

Sand-Wood 6 0.39 0.24 0.38 0.34 0.08 

Gravel-Wood 0 0.30 0.18 0.27 0.25 0.06 

Gravel-Wood 6 0.33 0.36 0.17 0.29 0.10 

Sand-Tire 0 0.30 0.18 0.27 0.25 0.06 

Sand-Tire 6 0.79 0.46 0.74 0.66 0.18 

Gravel-Tire 0 0.30 0.18 0.27 0.25 0.06 

Gravel-Tire 6 0.36 0.34 0.27 0.32 0.05 
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Table A.9. Acclimated anoxic microcosm PO4
3
 ⁻ data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 0.08 0.08 0.12 0.09 0.02 

Sand 1 0.15 0.10 0.13 0.13 0.03 

Sand 2 0.12 0.10 0.13 0.12 0.02 

Sand 4 0.24 0.11 0.05 0.13 0.10 

Sand 6 0.15 0.11 0.14 0.13 0.02 

Gravel 0 0.08 0.08 0.12 0.09 0.02 

Gravel 1 0.11 0.14 0.13 0.13 0.02 

Gravel 2 0.12 0.11 0.13 0.12 0.01 

Gravel 4 0.11 0.11 0.14 0.12 0.02 

Gravel 6 0.13 0.13 0.13 0.13 0.00 

Wood 0 0.08 0.08 0.12 0.09 0.02 

Wood 1 0.14 0.08 0.11 0.11 0.03 

Wood 2 0.09 0.07 0.11 0.09 0.02 

Wood 4 0.08 0.07 0.11 0.09 0.02 

Wood 6 0.09 0.07 0.11 0.09 0.02 

Tire 0 0.08 0.08 0.12 0.09 0.02 

Tire 1 0.03 0.00 0.03 0.02 0.02 

Tire 2 0.03 0.00 0.03 0.02 0.02 

Tire 4 0.04 0.00 0.04 0.03 0.02 

Tire 6 0.05 0.00 0.05 0.03 0.03 

Sand-Wood 0 0.08 0.08 0.11 0.09 0.02 

Sand-Wood 1 0.05 0.05 0.05 0.05 0.00 

Sand-Wood 2 0.04 0.03 0.03 0.03 0.01 

Sand-Wood 4 0.03 0.02 0.00 0.02 0.02 

Sand-Wood 6 0.03 0.03 0.00 0.02 0.02 

Gravel-Wood 0 0.08 0.08 0.11 0.09 0.02 

Gravel-Wood 1 0.06 0.04 0.06 0.05 0.01 

Gravel-Wood 2 0.05 0.03 0.04 0.04 0.01 

Gravel-Wood 4 0.05 0.02 0.03 0.03 0.02 

Gravel-Wood 6 0.07 0.03 0.02 0.04 0.03 

Sand-Tire 0 0.08 0.08 0.11 0.09 0.02 

Sand-Tire 1 0.05 0.05 0.06 0.05 0.01 

Sand-Tire 2 0.03 0.04 0.05 0.04 0.01 

Sand-Tire 4 0.00 0.03 0.03 0.02 0.02 

Sand-Tire 6 0.00 0.05 0.03 0.03 0.03 

Gravel-Tire 0 0.08 0.08 0.11 0.09 0.02 

Gravel-Tire 1 0.07 0.05 0.06 0.06 0.01 

Gravel-Tire 2 0.05 0.04 0.05 0.05 0.01 

Gravel-Tire 4 0.04 0.05 0.03 0.04 0.01 

Gravel-Tire 6 0.06 0.05 0.06 0.06 0.01 
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Table A.10. Acclimated anoxic microcosm SO4
2
 ⁻-S data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 19.27 18.11 23.25 20.21 2.70 

Sand 1 20.58 18.29 23.22 20.70 2.47 

Sand 2 20.05 18.02 22.90 20.32 2.45 

Sand 4 26.74 17.95 20.69 21.79 4.50 

Sand 6 21.85 17.92 22.94 20.90 2.64 

Gravel 0 19.27 18.11 23.25 20.21 2.70 

Gravel 1 20.88 18.24 23.04 20.72 2.40 

Gravel 2 20.40 18.17 22.47 20.35 2.15 

Gravel 4 20.22 18.30 22.52 20.35 2.11 

Gravel 6 20.87 18.01 22.70 20.53 2.36 

Wood 0 19.27 18.11 23.25 20.21 2.70 

Wood 1 19.70 17.47 21.93 19.70 2.23 

Wood 2 19.09 17.09 21.45 19.21 2.18 

Wood 4 16.76 17.13 20.78 18.22 2.22 

Wood 6 18.24 15.73 19.64 17.87 1.98 

Tire 0 19.27 18.11 23.25 20.21 2.70 

Tire 1 17.93 16.71 21.03 18.56 2.23 

Tire 2 17.11 16.50 20.64 18.08 2.24 

Tire 4 15.42 15.38 19.24 16.68 2.22 

Tire 6 13.83 13.47 17.58 14.96 2.28 

Sand-Wood 0 20.34 19.00 22.86 20.73 1.96 

Sand-Wood 1 20.20 18.20 22.90 20.43 2.36 

Sand-Wood 2 19.89 18.42 22.41 20.24 2.02 

Sand-Wood 4 19.73 18.41 22.56 20.23 2.12 

Sand-Wood 6 19.99 18.92 22.51 20.47 1.84 

Gravel-Wood 0 20.34 19.00 22.86 20.73 1.96 

Gravel-Wood 1 19.63 18.25 22.11 20.00 1.96 

Gravel-Wood 2 19.16 18.36 22.08 19.87 1.96 

Gravel-Wood 4 18.70 17.88 21.88 19.49 2.11 

Gravel-Wood 6 17.39 18.01 21.27 18.89 2.08 

Sand-Tire 0 20.34 19.00 22.86 20.73 1.96 

Sand-Tire 1 20.18 18.26 22.72 20.39 2.24 

Sand-Tire 2 20.26 18.46 22.67 20.46 2.11 

Sand-Tire 4 20.26 17.95 22.52 20.24 2.29 

Sand-Tire 6 16.36 18.06 22.32 18.91 3.07 

Gravel-Tire 0 20.34 19.00 22.86 20.73 1.96 

Gravel-Tire 1 19.92 18.12 22.12 20.05 2.00 

Gravel-Tire 2 19.69 18.11 22.33 20.04 2.13 

Gravel-Tire 4 18.97 18.01 22.21 19.73 2.20 

Gravel-Tire 6 18.20 18.24 22.17 19.54 2.28 
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Table A.11. Acclimated anoxic microcosm TSS data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 3.40 5.45 3.40 4.08 1.18 

Sand 6 6.70 6.50 6.99 6.73 0.25 

Gravel 0 3.40 5.45 3.40 4.08 1.18 

Gravel 6 5.90 7.31 6.58 6.60 0.71 

Wood 0 3.40 5.45 3.40 4.08 1.18 

Wood 6 43.00 16.77 15.56 25.11 15.51 

Tire 0 3.40 5.45 3.40 4.08 1.18 

Tire 6 12.30 8.53 15.04 11.96 3.27 

Sand-Wood 0 2.05 6.22 4.67 4.31 2.11 

Sand-Wood 6 6.10 17.50 10.00 11.20 5.79 

Gravel-Wood 0 2.05 6.22 4.67 4.31 2.11 

Gravel-Wood 6 21.60 19.19 18.53 19.77 1.62 

Sand-Tire 0 2.05 6.22 4.67 4.31 2.11 

Sand-Tire 6 7.90 9.40 4.93 7.41 2.27 

Gravel-Tire 0 2.05 6.22 4.67 4.31 2.11 

Gravel-Tire 6 14.90 15.84 14.48 15.07 0.70 

 

 

 

Table A.12. Acclimated anoxic microcosm VSS data. 

Media Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Sand 0 4.00 4.67 3.07 3.91 0.80 

Sand 6 4.90 4.19 4.18 4.42 0.41 

Gravel 0 4.00 4.67 3.07 3.91 0.80 

Gravel 6 2.30 3.93 4.08 3.44 0.99 

Wood 0 4.00 4.67 3.07 3.91 0.80 

Wood 6 39.10 14.80 14.16 22.69 14.22 

Tire 0 4.00 4.67 3.07 3.91 0.80 

Tire 6 11.00 7.13 11.92 10.02 2.54 

Sand-Wood 0 1.50 4.93 3.70 3.38 1.74 

Sand-Wood 6 8.70 13.21 6.94 9.62 3.23 

Gravel-Wood 0 1.50 4.93 3.70 3.38 1.74 

Gravel-Wood 6 14.80 13.93 12.43 13.72 1.20 

Sand-Tire 0 1.50 4.93 3.70 3.38 1.74 

Sand-Tire 6 4.60 5.52 4.12 4.75 0.71 

Gravel-Tire 0 1.50 4.93 3.70 3.38 1.74 

Gravel-Tire 6 7.30 7.21 7.45 7.32 0.12 
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Table A.13. Aerobic, anoxic and killed control gravel-wood microcosm TN data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 2.32 2.32 2.32 2.32 0.00 

Anoxic 6 0.48 0.46 0.53 0.49 0.04 

Aerobic 0 2.53 2.53 2.53 2.53 0.00 

Aerobic 6 0.54 0.82 0.87 0.74 0.18 

Killed control 0 2.23 2.23 2.23 2.23 0.00 

Killed control 6 4.73 4.84 4.82 4.80 0.06 

 

 

 

Table A.14. Aerobic, anoxic and killed control gravel-wood microcosm DOC data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 3.93 3.93 3.93 3.93 0.00 

Anoxic 6 5.16 4.77 4.76 4.90 0.23 

Aerobic 0 3.86 3.86 3.86 3.86 0.00 

Aerobic 6 4.45 4.95 4.36 4.59 0.32 

Killed control 0 3.83 3.83 3.83 3.83 0.00 

Killed control 6 66.48 76.5 71.2 71.39 5.01 

 

 

 

Table A.15. Aerobic, anoxic and killed control gravel-wood microcosm DO data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 1.00 1.00 1.00 1.00 0.00 

Anoxic 6 0.03 0.05 0.00 0.03 0.03 

Aerobic 0 4.92 4.62 5.92 5.15 0.68 

Aerobic 1 1.13 1.64 1.91 1.56 0.40 

Aerobic 2 0.58 0.82 1.11 0.84 0.27 

Aerobic 3 0.57 0.7 0.15 0.47 0.29 

Aerobic 4 0.37 0.53 0.05 0.32 0.24 

Aerobic 6 0.31 0.03 0.01 0.12 0.17 

Killed control 0 1.00 1.00 1.00 1.00 0.00 
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Table A.16. Aerobic, anoxic and killed control gravel-wood microcosm NH4
+
   -N data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 0.04 0.04 0.04 0.04 0.00 

Anoxic 1 0.00 0.00 0.00 0.00 0.00 

Anoxic 2 0.00 0.00 0.00 0.00 0.00 

Anoxic 3 0.00 0.00 0.00 0.00 0.00 

Anoxic 4 0.00 0.00 0.00 0.00 0.00 

Anoxic 6 0.00 0.00 0.00 0.00 0.00 

Aerobic 0 0.01 0.01 0.01 0.01 0.00 

Aerobic 1 0.00 0.00 0.00 0.00 0.00 

Aerobic 2 0.00 0.00 0.00 0.00 0.00 

Aerobic 3 0.00 0.00 0.00 0.00 0.00 

Aerobic 4 0.00 0.00 0.00 0.00 0.00 

Aerobic 6 0.00 0.00 0.00 0.00 0.00 

Killed control 0 0.00 0.00 0.00 0.00 0.00 

Killed control 1 0.16 0.31 0.45 0.31 0.15 

Killed control 2 0.00 0.43 0.61 0.35 0.31 

Killed control 3 0.61 0.66 0.77 0.68 0.08 

Killed control 4 0.77 0.77 0.86 0.80 0.05 

Killed control 6 0.89 0.95 1.01 0.95 0.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

140 
 

Table A.17. Aerobic, anoxic and killed control gravel-wood microcosm NO2
⎺   -N data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 0.07 0.07 0.07 0.07 0.00 

Anoxic 1 0.07 0.08 0.08 0.08 0.01 

Anoxic 2 0.07 0.10 0.08 0.08 0.02 

Anoxic 3 0.08 0.10 0.08 0.09 0.01 

Anoxic 4 0.07 0.10 0.08 0.08 0.02 

Anoxic 6 0.08 0.08 0.07 0.08 0.01 

Aerobic 0 0.03 0.03 0.03 0.03 0.00 

Aerobic 1 0.03 0.02 0.02 0.02 0.01 

Aerobic 2 0.03 0.03 0.03 0.03 0.00 

Aerobic 3 0.04 0.02 0.03 0.03 0.01 

Aerobic 4 0.04 0.04 0.04 0.04 0.00 

Aerobic 6 0.04 0.04 0.04 0.04 0.00 

Killed control 0 0.08 0.08 0.08 0.08 0.00 

Killed control 1 0.08 0.08 0.08 0.08 0.00 

Killed control 2 0.08 0.08 0.09 0.08 0.01 

Killed control 3 0.08 0.08 0.09 0.08 0.01 

Killed control 4 0.09 0.09 0.09 0.09 0.00 

Killed control 6 0.09 0.09 0.09 0.09 0.00 
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Table A.18. Aerobic, anoxic and killed control gravel-wood microcosm NO3⁻   -N data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 1.88 1.88 1.88 1.88 0.00 

Anoxic 1 1.45 1.21 1.40 1.35 0.13 

Anoxic 2 1.09 0.99 1.02 1.03 0.05 

Anoxic 3 0.76 0.40 0.69 0.62 0.19 

Anoxic 4 0.49 0.26 0.43 0.39 0.12 

Anoxic 6 0.05 0.04 0.13 0.07 0.05 

Aerobic 0 1.96 1.96 1.96 1.96 0.00 

Aerobic 1 1.43 1.23 1.52 1.39 0.15 

Aerobic 2 1.17 1.26 1.37 1.27 0.10 

Aerobic 3 0.88 0.57 1.18 0.88 0.31 

Aerobic 4 0.63 0.69 0.97 0.76 0.18 

Aerobic 6 0.19 0.42 0.55 0.39 0.18 

Killed control 0 1.92 1.92 1.92 1.92 0.00 

Killed control 1 1.80 1.76 1.79 1.78 0.02 

Killed control 2 1.76 2.01 1.77 1.85 0.14 

Killed control 3 1.80 1.78 1.77 1.78 0.02 

Killed control 4 1.87 1.78 1.78 1.81 0.05 

Killed control 6 1.82 1.82 1.87 1.84 0.03 

 

 

 

Table A.19. Aerobic, anoxic and killed control gravel-wood microcosm Org-N data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 0.33 0.33 0.33 0.33 0.00 

Anoxic 6 0.36 0.33 0.33 0.34 0.02 

Aerobic 0 0.54 0.54 0.54 0.54 0.00 

Aerobic 6 0.31 0.36 0.28 0.32 0.04 

Killed control 0 0.22 0.22 0.22 0.22 0.00 

Killed control 6 1.93 1.97 1.86 1.92 0.06 
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Table A.20. Aerobic, anoxic and killed control gravel-wood microcosm PO4
3
 ⁻-P data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 0.18 0.18 0.18 0.18 0.00 

Anoxic 1 0.16 0.18 0.17 0.17 0.01 

Anoxic 2 0.15 0.16 0.16 0.16 0.01 

Anoxic 3 0.15 0.16 0.16 0.16 0.01 

Anoxic 4 0.15 0.16 0.16 0.16 0.01 

Anoxic 6 0.15 0.16 0.15 0.15 0.01 

Aerobic 0 0.12 0.12 0.12 0.12 0.00 

Aerobic 1 0.10 0.09 0.11 0.10 0.01 

Aerobic 2 0.09 0.08 0.10 0.09 0.01 

Aerobic 3 0.09 0.00 0.09 0.06 0.05 

Aerobic 4 0.09 0.08 0.10 0.09 0.01 

Aerobic 6 0.09 0.08 0.08 0.08 0.01 

Killed control 0 0.08 0.08 0.08 0.08 0.00 

Killed control 1 0.37 0.29 0.27 0.31 0.05 

Killed control 2 0.45 0.40 0.41 0.42 0.03 

Killed control 3 0.62 0.56 0.51 0.56 0.06 

Killed control 4 0.73 0.64 0.56 0.64 0.09 

Killed control 6 0.83 0.74 0.66 0.74 0.09 
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Table A.21. Aerobic, anoxic and killed control gravel-wood microcosm SO4
2
 ⁻-S data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 35.40 35.40 35.40 35.40 0.00 

Anoxic 1 34.69 34.75 35.24 34.89 0.30 

Anoxic 2 34.51 34.55 35.16 34.74 0.36 

Anoxic 3 34.96 35.02 34.88 34.95 0.07 

Anoxic 4 34.31 34.73 34.63 34.56 0.22 

Anoxic 6 33.91 34.41 34.21 34.18 0.25 

Aerobic 0 35.63 35.63 35.63 35.63 0.00 

Aerobic 1 35.00 30.02 35.23 33.42 2.94 

Aerobic 2 35.26 35.08 35.42 35.25 0.17 

Aerobic 3 34.37 24.10 35.36 31.28 6.23 

Aerobic 4 35.45 35.41 35.27 35.38 0.09 

Aerobic 6 35.63 35.72 35.40 35.58 0.17 

Killed control 0 38.84 38.84 38.84 38.84 0.00 

Killed control 1 43.45 42.89 43.70 43.35 0.41 

Killed control 2 43.12 44.58 44.71 44.14 0.88 

Killed control 3 45.78 46.45 46.22 46.15 0.34 

Killed control 4 46.80 47.67 47.71 47.39 0.51 

Killed control 6 50.56 51.87 49.93 50.79 0.99 

 

 

 

Table A.22. Aerobic, anoxic and killed control gravel-wood microcosm TSS data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 2.62 2.62 2.62 2.62 0.00 

Anoxic 6 37.00 25.95 27.25 30.07 6.04 

Aerobic 0 3.28 3.28 3.28 3.28 0.00 

Aerobic 6 28.90 21.60 17.15 22.55 5.93 

Killed control 0 2.20 2.20 2.20 2.20 0.00 

Killed control 6 37.85 34.20 29.30 33.78 4.29 
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Table A.23. Aerobic, anoxic and killed control gravel-wood microcosm VSS data. 

Condition Incubation 

time (hr) 

Sample 1 

(hr) 

Sample 2 

(hr) 

Sample 3 

(hr) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

Anoxic 0 1.22 1.22 1.22 1.22 0.00 

Anoxic 6 26.65 19.55 21.05 22.42 3.74 

Aerobic 0 2.60 2.60 2.60 2.60 0.00 

Aerobic 6 19.35 12.50 14.35 15.40 3.54 

Killed control 0 1.87 1.87 1.87 1.87 0.00 

Killed control 6 34.35 30.45 24.25 29.68 5.09 
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Appendix B: 

 

Storm Event Study Data 
 

 

 

Table B.1. Storm event start time. 

Storm event Month Day Year Time AM/PM 

1 11 18 2012 12:56 PM 

2 12 5 2012 10:35 PM 

3 12 10 2012 11:15 AM 

4 12 19 2012 3:45 PM 

5 12 21 2012 6:15 AM 

6 12 30 2012 4:00 PM 

7 1 8 2013 7:10 AM 

8 1 17 2013 5:48 AM 

9 2 17 2013 7:00 AM 

10 3 29 2013 8:45 PM 

11 5 6 2013 6:45 PM 

 

 

 

Table B.2. Storm event #1 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

1 29.27 30 31 30.5 

2 14.63 15 15 15 

3 9.76 10 8 9 

4 7.32 7 7.25 7.1 

6 4.88 5 5 5 

9 3.25 3.25 3.5 3.4 
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Table B.3. Storm event #1 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 44.43 44 48 46 

2 22.22 23 23 23 

3 14.81 15 14 14.5 

4 11.11 11 11 11 

6 7.41 7.5 7.5 7.5 

9 4.94 5 4.5 4.8 

 

 

 

Table B.4. Storm event #1 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 59.33 59 60 59.5 

2 29.67 30 31 30.5 

3 19.78 20 20 20 

4 14.83 15 14 14.5 

6 9.89 9.5 10 9.8 

9 6.59 6.75 6.5 6.6 

 

 

 

Table B.5. Storm event #1 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 2.29 2.26 2.31 2.29 0.02 

1.25 1 2.35 2.29 2.30 2.31 0.03 

4 2 2.30 2.23 2.31 2.28 0.04 

8.25 3 2.25 2.22 2.30 2.26 0.04 

14 4 2.32 2.29 2.30 2.31 0.01 

22.5 6 2.30 2.28 2.26 2.28 0.02 

35.25 9 2.37 2.34 2.42 2.38 0.04 
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Table B.6. Storm event #1 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.48 0.47 0.47 0.47 0.01 

1.25 1 0.92 0.92 0.94 0.93 0.01 

4 2 1.37 1.40 1.41 1.39 0.02 

8.25 3 1.06 1.07 1.07 1.07 0.01 

14 4 0.94 0.93 0.94 0.94 0.00 

22.5 6 0.62 0.62 0.61 0.62 0.01 

35.25 9 0.45 0.44 0.45 0.45 0.01 

 

 

 

Table B.7. Storm event #1 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.44 0.45 0.45 0.45 0.01 

1.25 1 0.67 0.67 0.68 0.67 0.01 

4 2 1.35 1.33 1.35 1.34 0.01 

8.25 3 0.95 1.00 0.99 0.98 0.03 

14 4 0.69 0.71 0.72 0.71 0.02 

22.5 6 0.47 0.47 0.48 0.47 0.01 

35.25 9 0.44 0.45 0.46 0.45 0.01 

 

 

 

Table B.8. Storm event #1 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.46 0.47 0.48 0.47 0.01 

1.25 1 0.80 0.82 0.85 0.83 0.03 

4 2 1.42 1.46 1.46 1.45 0.02 

8.25 3 1.09 1.05 1.07 1.07 0.02 

14 4 0.67 0.64 0.67 0.66 0.02 

22.5 6 0.38 0.40 0.40 0.40 0.01 

35.25 9 0.43 0.42 0.42 0.42 0.01 
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Table B.9. Storm event #1 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 3.87 3.95 3.97 3.93 0.05 

1.25 1 4.65 4.65 4.67 4.65 0.01 

4 2 4.50 4.58 4.67 4.58 0.08 

8.25 3 4.31 4.18 4.33 4.27 0.08 

14 4 4.03 4.14 4.11 4.09 0.06 

22.5 6 4.03 3.99 4.14 4.05 0.08 

35.25 9 4.55 4.72 4.67 4.65 0.08 

 

 

 

Table B.10. Storm event #1 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 7.50 7.74 7.74 7.66 0.14 

1.25 1 6.16 6.22 6.29 6.22 0.07 

4 2 4.66 4.48 4.59 4.57 0.09 

8.25 3 5.00 4.93 4.96 4.96 0.03 

14 4 4.87 4.84 5.01 4.91 0.09 

22.5 6 5.20 5.09 5.21 5.17 0.06 

35.25 9 6.07 5.96 6.14 6.06 0.09 

 

 

 

Table B.11. Storm event #1 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 9.82 10.03 10.06 9.97 0.13 

1.25 1 6.99 6.88 6.80 6.89 0.09 

4 2 4.79 4.76 4.82 4.79 0.03 

8.25 3 4.99 5.02 5.04 5.02 0.03 

14 4 4.37 4.30 4.29 4.32 0.04 

22.5 6 5.60 5.40 5.52 5.51 0.10 

35.25 9 6.77 6.68 6.92 6.79 0.12 
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Table B.12. Storm event #1 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 8.47 8.19 8.33 8.33 0.14 

1.25 1 6.10 6.07 6.25 6.14 0.10 

4 2 4.81 4.83 4.99 4.88 0.10 

8.25 3 4.83 4.61 4.70 4.71 0.11 

14 4 4.37 4.53 4.53 4.47 0.09 

22.5 6 5.40 5.56 5.53 5.50 0.08 

35.25 9 6.05 6.00 6.07 6.04 0.03 

 

 

 

Table B.13. Storm event #1 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 5.76 0 0 0 

1.25 1 9.7 0.25 0.15 0.01 

4 2 8 0 0.1 0.21 

8.25 3 6.2 0.14 0.07 0.19 

14 4 5.5 0 0.07 0.08 

22.5 6 5.3 0.07 0.23 0.09 

35.25 9 5 0.01 0.05 0.06 

 

 

 

Table B.14. Storm event #1 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 6.94 6.85 6.85 6.85 

1.25 1 7.23 6.93 6.89 6.96 

4 2 7.46 6.83 6.83 6.88 

8.25 3 7.35 6.94 6.88 6.94 

14 4 7.46 6.9 6.92 6.94 

22.5 6 7.45 6.94 6.93 6.94 

35.25 9 7.42 6.94 6.88 6.97 
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Table B.15. Storm event #1 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.00 0.00 0.00 0.00 

1.25 1 0.00 0.00 0.00 0.00 

4 2 0.00 0.00 0.00 0.00 

8.25 3 0.00 0.00 0.00 0.00 

14 4 0.00 0.00 0.00 0.00 

22.5 6 0.00 0.00 0.00 0.00 

35.25 9 0.00 0.00 0.00 0.00 

 

 

 

Table B.16. Storm event #1 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.01 0.03 0.03 0.03 

1.25 1 0.01 0.02 0.02 0.03 

4 2 0.01 0.06 0.08 0.03 

8.25 3 0.02 0.09 0.10 0.08 

14 4 0.01 0.11 0.11 0.08 

22.5 6 0.02 0.02 0.02 0.04 

35.25 9 0.01 0.00 0.02 0.02 

 

 

 

Table B.17. Storm event #1 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 2.00 0.01 0.01 0.01 

1.25 1 1.97 0.36 0.26 0.46 

4 2 1.95 0.92 0.82 0.90 

8.25 3 1.95 0.56 0.47 0.55 

14 4 1.95 0.18 0.25 0.39 

22.5 6 1.95 0.11 0.01 0.06 

35.25 9 1.95 0.13 0.01 0.01 
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Table B.18. Storm event #1 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.28 0.43 0.41 0.44 

1.25 1 0.33 0.45 0.39 0.44 

4 2 0.32 0.47 0.44 0.46 

8.25 3 0.29 0.41 0.41 0.44 

14 4 0.34 0.37 0.34 0.46 

22.5 6 0.32 0.26 0.45 0.52 

35.25 9 0.41 0.29 0.42 0.42 

 

 

 

Table B.19. Storm event #1 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.09 0.10 0.07 0.11 

1.25 1 0.09 0.08 0.07 0.08 

4 2 0.09 0.00 0.00 0.00 

8.25 3 0.09 0.00 0.00 0.00 

14 4 0.09 0.00 0.00 0.00 

22.5 6 0.09 0.05 0.03 0.03 

35.25 9 0.09 0.04 0.07 0.10 

 

 

 

Table B.20. Storm event #1 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 54.76 36.23 30.75 36.58 

1.25 1 54.83 45.28 43.28 44.76 

4 2 54.61 55.29 54.56 54.46 

8.25 3 54.62 55.47 54.34 55.28 

14 4 54.79 52.93 54.65 54.61 

22.5 6 54.62 53.38 54.00 53.53 

35.25 9 54.56 45.84 49.49 50.49 
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Table B.21. Storm event #1 TSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 6.28 1.46 1.18 2.84 

1.25 1 6.28 3.94 4.06 3.96 

4 2 6.14 3.32 3.30 2.93 

8.25 3 6.30 2.40 2.80 2.40 

14 4 5.92 2.91 2.25 2.06 

22.5 6 4.86 2.13 2.04 2.14 

35.25 9 4.04 1.99 1.76 1.87 

 

 

 

Table B.22. Storm event #1 VSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.68 0.68 0.00 0.18 

1.25 1 1.68 1.14 0.82 0.76 

4 2 2.02 1.12 1.42 0.00 

8.25 3 1.24 0.27 0.02 0.63 

14 4 1.90 0.40 0.67 0.48 

22.5 6 1.16 0.47 0.00 0.00 

35.25 9 1.34 0.41 0.04 0.00 

 

 

 

Table B.23. Storm event #2 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

1 29.27    

2 14.63    

3 9.76    

4 7.32    

6 4.88    

9 3.25    
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Table B.24. Storm event #2 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 44.43 44.5 44 44.3 

2 22.22 22.25 21.5 21.9 

3 14.81 15 14 14.5 

4 11.11 11 11.25 11.1 

6 7.41 7.75 7.75 7.75 

9 4.94 5 5 5 

 

 

 

Table B.25. Storm event #2 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 59.33 59.33 59.33 59.33 

2 29.67 29.5 29.5 29.5 

3 19.78 20 19 19.5 

4 14.83 14.75 14.75 14.75 

6 9.89 9.75 9.5 9.6 

9 6.59 6.5 6.5 6.5 

 

 

 

Table B.26. Storm event #2 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 2.37 2.34 2.42 2.38 0.04 

1.25 1 2.45 2.52 2.54 2.50 0.04 

4 2 2.57 2.59 2.62 2.59 0.03 

8.25 3 2.40 2.34 2.43 2.39 0.05 

14 4 2.42 2.40 2.41 2.41 0.01 

22.5 6 2.46 2.54 2.54 2.51 0.05 

35.25 9 2.40 2.31 2.38 2.36 0.05 
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Table B.27. Storm event #2 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.68 0.66 0.69 0.68 0.02 

1.25 1 1.17 1.17 1.14 1.16 0.01 

4 2 0.80 0.80 0.81 0.80 0.01 

8.25 3 0.90 0.89 0.90 0.90 0.00 

14 4 0.79 0.78 0.79 0.78 0.00 

22.5 6 0.52 0.53 0.56 0.54 0.02 

35.25 9 0.42 0.41 0.44 0.42 0.01 

 

 

 

Table B.28. Storm event #2 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.66 0.62 0.63 0.64 0.02 

1.25 1 1.17 1.23 1.20 1.20 0.03 

4 2 0.45 0.44 0.45 0.45 0.00 

8.25 3 0.46 0.45 0.45 0.45 0.00 

14 4 0.52 0.51 0.51 0.51 0.01 

22.5 6 0.45 0.45 0.45 0.45 0.00 

35.25 9 0.42 0.40 0.42 0.41 0.01 

 

 

 

Table B.29. Storm event #2 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.74 0.70 0.70 0.71 0.02 

1.25 1 1.27 1.26 1.30 1.28 0.02 

4 2 0.50 0.52 0.52 0.52 0.01 

8.25 3 0.48 0.46 0.48 0.47 0.01 

14 4 0.56 0.54 0.56 0.56 0.01 

22.5 6 0.44 0.43 0.43 0.43 0.01 

35.25 9 0.40 0.37 0.37 0.38 0.01 
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Table B.30. Storm event #2 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 4.55 4.72 4.67 4.65 0.08 

1.25 1 5.05 4.92 5.05 5.01 0.07 

4 2 4.60 4.56 4.75 4.64 0.10 

8.25 3 4.31 4.41 4.47 4.40 0.08 

14 4 4.49 4.41 4.38 4.43 0.05 

22.5 6 4.86 4.83 4.93 4.87 0.05 

35.25 9 5.10 4.96 4.98 5.01 0.08 

 

 

 

Table B.31. Storm event #2 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 86.70 84.41 84.57 85.22 1.28 

1.25 1 38.52 38.82 37.41 38.25 0.74 

4 2 7.53 7.41 7.28 7.41 0.13 

8.25 3 4.88 5.02 5.11 5.00 0.12 

14 4 4.77 4.79 4.73 4.76 0.03 

22.5 6 4.89 4.83 4.83 4.85 0.03 

35.25 9 5.74 5.54 5.56 5.62 0.11 

 

 

 

Table B.32. Storm event #2 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 126.87 130.95 132.54 130.12 2.92 

1.25 1 53.43 51.30 52.39 52.37 1.07 

4 2 6.45 6.51 6.65 6.54 0.10 

8.25 3 5.28 5.14 5.34 5.25 0.10 

14 4 5.05 5.04 5.11 5.07 0.04 

22.5 6 5.02 4.84 4.96 4.94 0.09 

35.25 9 5.75 5.65 5.76 5.72 0.06 
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Table B.33. Storm event #2 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 125.85 123.00 126.74 125.20 1.95 

1.25 1 44.96 43.85 44.53 44.44 0.56 

4 2 5.85 5.91 6.04 5.93 0.10 

8.25 3 5.15 5.17 5.25 5.19 0.06 

14 4 4.67 4.75 4.67 4.70 0.05 

22.5 6 5.21 5.25 5.23 5.23 0.02 

35.25 9 5.55 5.61 5.75 5.64 0.11 

 

 

 

Table B.34. Storm event #2 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 5 0.05 0 0 

1.25 1 4.98 0 0 0.12 

4 2 4.82 0 0 0 

8.25 3 5.24 0.09 0 0.03 

14 4 5.8 0 0 0.01 

22.5 6 6.2 0.06 0 0.06 

35.25 9 4.92 0.04 0.05 0.11 

 

 

 

Table B.35. Storm event #2 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 7.42    

1.25 1 7.41 6.31 6.23 6.5 

4 2 7.35 6.73 6.72 6.77 

8.25 3 7.38 7.01 7.01 7.23 

14 4 7.37 6.85 6.86 6.88 

22.5 6 7.38 6.9 6.87 6.91 

35.25 9 7.37 6.95 6.89 6.92 
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Figure B.36. Storm event #2 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.00 0.07 0.02 0.06 

1.25 1 0.00 0.05 0.02 0.03 

4 2 0.00 0.00 0.00 0.00 

8.25 3 0.00 0.00 0.00 0.00 

14 4 0.00 0.00 0.00 0.00 

22.5 6 0.00 0.00 0.00 0.00 

35.25 9 0.00 0.00 0.00 0.00 

 

 

 

Table B.37. Storm event #2 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.01 0.07 0.07 0.07 

1.25 1 0.01 0.04 0.07 0.05 

4 2 0.02 0.02 0.02 0.03 

8.25 3 0.02 0.02 0.03 0.01 

14 4 0.01 0.03 0.03 0.00 

22.5 6 0.02 0.02 0.03 0.03 

35.25 9 0.02 0.03 0.02 0.01 

 

 

 

Table B.38. Storm event #2 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.92 0.01 0.02 0.01 

1.25 1 1.99 0.56 0.51 0.61 

4 2 1.98 0.04 0.00 0.23 

8.25 3 1.99 0.02 0.03 0.50 

14 4 1.99 0.06 0.06 0.30 

22.5 6 1.98 0.01 0.03 0.09 

35.25 9 1.97 0.01 0.02 0.00 
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Table B.39. Storm event #2 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.44 0.56 0.52 0.54 

1.25 1 0.50 0.63 0.60 0.47 

4 2 0.59 0.45 0.43 0.54 

8.25 3 0.44 0.43 0.39 0.38 

14 4 0.38 0.47 0.43 0.48 

22.5 6 0.51 0.41 0.38 0.41 

35.25 9 0.37 0.35 0.37 0.41 

 

 

 

Table B.40. Storm event #2 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.09 0.37 0.25 0.15 

1.25 1 0.11 0.07 0.05 0.07 

4 2 0.12 0.00 0.00 0.00 

8.25 3 0.12 0.00 0.00 0.00 

14 4 0.12 0.00 0.00 0.00 

22.5 6 0.11 0.00 0.00 0.00 

35.25 9 0.11 0.00 0.00 0.00 

 

 

 

Table B.41. Storm event #2 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 54.08 1.03 0.72 1.04 

1.25 1 62.41 33.08 35.60 39.17 

4 2 62.10 60.40 60.04 59.00 

8.25 3 62.59 60.58 61.15 62.05 

14 4 62.73 58.01 55.07 61.80 

22.5 6 62.30 60.79 61.33 61.06 

35.25 9 62.47 59.14 59.64 59.22 
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Table B.42. Storm event #2 TSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 4.04 2.58 2.98 2.80 

1.25 1 3.77 3.12 3.72 3.06 

4 2 5.49 3.96 4.09 3.55 

8.25 3 4.33 3.33 3.48 3.28 

14 4 4.45 2.41 2.53 2.60 

22.5 6 4.08 2.96 1.64 1.82 

35.25 9 4.36 1.59 1.56 1.90 

 

 

 

Table B.43. Storm event #2 VSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.34 0.00 0.00 0.38 

1.25 1 1.27 0.30 0.84 0.64 

4 2 2.29 1.09 0.67 0.85 

8.25 3 1.51 0.40 0.57 0.65 

14 4 1.72 0.23 0.72 0.10 

22.5 6 1.55 0.31 0.72 0.23 

35.25 9 1.19 0.20 0.06 0.08 

 

 

 

Table B.44. Storm event #3 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

1 29.27 29.5 29.5 29.5 

2 14.63 14.5 14.5 14.5 

3 9.76 9.5 9.5 9.5 

4 7.32 7.3 7.25 7.3 

6 4.88 5 4.75 5.9 

9 3.25 3.25 3.25 3.25 
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Table B.45. Storm event #3 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 44.43 45 46 45.5 

2 22.22 22.5 22.5 22.5 

3 14.81 15 14.75 14.9 

4 11.11 11 10.75 10.9 

6 7.41 7.5 7.5 7.5 

9 4.94 4.75 4.75 4.75 

 

 

 

Table B.46. Storm event #3 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 59.33 59.5 60 59.75 

2 29.67 29.5 29 29.25 

3 19.78 19.5 20 19.75 

4 14.83 15 15 15 

6 9.89 10 9.75 9.8 

9 6.59 6.75 6.5 6.6 

 

 

 

Table B.47. Storm event #3 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 2.40 2.31 2.38 2.36 0.05 

1.25 1 2.33 2.35 2.31 2.33 0.02 

4 2 2.44 2.42 2.37 2.41 0.04 

8.25 3 2.31 2.33 2.28 2.31 0.02 

14 4 2.39 2.31 2.34 2.35 0.04 

22.5 6 2.41 2.35 2.43 2.40 0.04 

35.25 9 2.33 2.35 2.40 2.36 0.03 
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Table B.48. Storm event #3 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.58 0.56 0.58 0.58 0.01 

1.25 1 0.97 0.93 0.95 0.95 0.02 

4 2 1.02 1.02 1.04 1.03 0.01 

8.25 3 0.88 0.86 0.86 0.87 0.01 

14 4 0.86 0.86 0.86 0.86 0.00 

22.5 6 0.56 0.55 0.54 0.55 0.01 

35.25 9 0.40 0.40 0.43 0.41 0.02 

 

 

 

Table B.49. Storm event #3 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.58 0.60 0.62 0.60 0.02 

1.25 1 0.91 0.89 0.92 0.90 0.02 

4 2 0.82 0.81 0.80 0.81 0.01 

8.25 3 0.64 0.64 0.65 0.64 0.01 

14 4 0.57 0.56 0.56 0.56 0.01 

22.5 6 0.47 0.51 0.48 0.48 0.02 

35.25 9 0.41 0.41 0.41 0.41 0.00 

 

 

 

Table B.50. Storm event #3 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.56 0.55 0.55 0.55 0.01 

1.25 1 0.96 0.91 0.96 0.94 0.03 

4 2 0.74 0.75 0.75 0.75 0.01 

8.25 3 0.51 0.54 0.53 0.53 0.02 

14 4 0.50 0.49 0.49 0.49 0.01 

22.5 6 0.40 0.41 0.43 0.41 0.02 

35.25 9 0.41 0.43 0.41 0.42 0.01 
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Table B.51. Storm event #3 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 5.10 4.96 4.98 5.01 0.08 

1.25 1 4.59 4.45 4.52 4.52 0.07 

4 2 4.67 4.58 4.63 4.63 0.04 

8.25 3 4.55 4.49 4.65 4.56 0.08 

14 4 4.61 4.61 4.62 4.62 0.01 

22.5 6 4.99 5.04 5.07 5.03 0.04 

35.25 9 5.02 4.89 4.85 4.92 0.09 

 

 

 

Table B.52. Storm event #3 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 10.88 10.89 10.66 10.81 0.13 

1.25 1 8.74 8.45 8.82 8.67 0.19 

4 2 5.28 5.21 5.25 5.25 0.04 

8.25 3 5.04 5.16 5.26 5.15 0.11 

14 4 5.04 4.91 4.96 4.97 0.06 

22.5 6 4.55 4.65 4.73 4.65 0.09 

35.25 9 5.01 4.98 5.16 5.05 0.10 

 

 

 

Table B.53. Storm event #3 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 14.78 15.11 15.24 15.04 0.24 

1.25 1 9.90 9.88 10.11 9.96 0.13 

4 2 5.15 5.31 5.29 5.25 0.09 

8.25 3 5.29 5.17 5.18 5.21 0.07 

14 4 5.50 5.33 5.40 5.41 0.08 

22.5 6 5.42 5.40 5.50 5.44 0.05 

35.25 9 5.91 5.77 5.90 5.86 0.08 
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Table B.54. Storm event #3 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 13.75 13.61 13.75 13.70 0.08 

1.25 1 8.47 8.58 8.75 8.60 0.14 

4 2 5.19 5.09 5.10 5.13 0.06 

8.25 3 4.89 5.00 5.07 4.98 0.09 

14 4 4.71 4.86 4.75 4.77 0.08 

22.5 6 5.09 5.13 5.28 5.17 0.10 

35.25 9 5.33 5.30 5.20 5.28 0.07 

 

 

 

Table B.55. Storm event #3 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 4.92 0 0 0.08 

1.25 1 4.5 0.05 0.07 0.01 

4 2 5.4 0.05 0 0.09 

8.25 3 4.7 0.11 0.26 0.11 

14 4 5.72 0.05 0.11 0.23 

22.5 6 5.9 0.28 0.19 0.2 

35.25 9 6.45 0.26 0.16 0.18 

 

 

 

Table B.56. Storm event #3 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 7.37 6.82 6.78 6.91 

1.25 1 8.12 6.94 6.97 7.09 

4 2 7.92 6.99 6.98 7 

8.25 3 8.06 7.24 7.16 7.27 

14 4 8.05 7.15 7.2 7.23 

22.5 6 7.89 7.05 7.12 7.19 

35.25 9 7.89 6.88 6.87 6.98 
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Table B.57. Storm event #3 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.00 0.04 0.03 0.05 

1.25 1 0.00 0.00 0.00 0.05 

4 2 0.00 0.00 0.00 0.03 

8.25 3 0.00 0.00 0.00 0.00 

14 4 0.00 0.00 0.00 0.00 

22.5 6 0.00 0.00 0.00 0.00 

35.25 9 0.00 0.00 0.00 0.00 

 

 

 

Table B.58. Storm event #3 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.02 0.08 0.06 0.08 

1.25 1 0.02 0.04 0.05 0.07 

4 2 0.02 0.00 0.00 0.00 

8.25 3 0.03 0.04 0.00 0.11 

14 4 0.02 0.02 0.02 0.13 

22.5 6 0.02 0.02 0.03 0.03 

35.25 9 0.02 0.02 0.02 0.01 

 

 

 

Table B.59. Storm event #3 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.97 0.01 0.01 0.01 

1.25 1 1.98 0.41 0.36 0.37 

4 2 1.96 0.19 0.21 0.44 

8.25 3 1.98 0.02 0.09 0.30 

14 4 1.98 0.03 0.05 0.27 

22.5 6 2.06 0.00 0.01 0.07 

35.25 9 2.02 0.00 0.01 0.00 
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Table B.60. Storm event #3 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.37 0.43 0.50 0.44 

1.25 1 0.33 0.49 0.49 0.46 

4 2 0.42 0.56 0.59 0.56 

8.25 3 0.30 0.46 0.55 0.45 

14 4 0.35 0.44 0.49 0.45 

22.5 6 0.30 0.38 0.44 0.44 

35.25 9 0.32 0.39 0.38 0.39 

 

 

 

Table B.61. Storm event #3 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.11 0.30 0.23 0.26 

1.25 1 0.12 0.19 0.19 0.20 

4 2 0.09 0.00 0.00 0.03 

8.25 3 0.12 0.00 0.00 0.00 

14 4 0.12 0.00 0.00 0.00 

22.5 6 0.12 0.03 0.00 0.02 

35.25 9 0.12 0.06 0.05 0.05 

 

 

 

Table B.62. Storm event #3 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 62.47 9.17 12.81 14.55 

1.25 1 64.97 42.78 39.47 38.19 

4 2 65.11 64.16 65.03 63.15 

8.25 3 66.41 66.12 65.79 64.75 

14 4 65.51 65.77 65.62 65.44 

22.5 6 68.17 63.80 63.62 63.61 

35.25 9 68.35 60.69 60.87 60.70 
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Table B.63. Storm event #3 TSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 4.36 1.93 1.39 1.30 

1.25 1 4.56 1.86 2.65 3.24 

4 2 5.18 2.46 2.53 2.82 

8.25 3 4.43 2.06 2.20 2.37 

14 4 4.24 1.54 1.54 1.72 

22.5 6 4.40 1.46 1.60 1.93 

35.25 9 1.72 1.61 1.42 1.47 

 

 

 

Table B.64. Storm event #3 VSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.19 0.05 0.00 0.08 

1.25 1 1.60 0.29 0.51 0.88 

4 2 2.04 0.30 0.70 0.88 

8.25 3 1.32 0.46 0.33 0.70 

14 4 1.46 0.44 0.34 0.52 

22.5 6 1.40 0.33 0.31 0.73 

35.25 9 0.29 0.20 0.00 0.17 

 

 

 

Table B.65. Storm event #4 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

1 29.27 29.5 29.5 29.5 

2 14.63 14.75 14.75 14.75 

3 9.76 9.5 9.25 9.4 

4 7.32 7.25 7 7.1 

6 4.88 5 5 5 

9 3.25 3.5 3.5 5 
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Table B.66. Storm event #4 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 44.43 44.5 44.5 44.5 

2 22.22 22.25 22.5 22.4 

3 14.81 14.5 14.5 14.5 

4 11.11 11.25 10.75 11.0 

6 7.41 7.75 7.75 7.75 

9 4.94 5 4.75 4.9 

 

 

 

Table B.67. Storm event #4 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 59.33 59.5 60 59.75 

2 29.67 29.67 29.5 29.6 

3 19.78 20 20 20 

4 14.83 14.75 14.75 14.75 

6 9.89 10 10 10 

9 6.59 6.5 6.5 6.5 

 

 

 

Table B.68. Storm event #4 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 2.33 2.35 2.40 2.36 0.03 

1.25 1 2.28 2.25 2.30 2.27 0.02 

4 2 2.30 2.29 2.30 2.30 0.00 

8.25 3 2.38 2.36 2.46 2.40 0.05 

14 4 2.34 2.37 2.35 2.35 0.02 

22.5 6 2.28 2.36 2.31 2.32 0.04 

35.25 9 2.29 2.28 2.36 2.31 0.05 
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Table B.69. Storm event #4 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.64 0.66 0.64 0.65 0.01 

1.25 1 1.00 1.01 1.00 1.00 0.01 

4 2 1.01 1.01 1.03 1.02 0.01 

8.25 3 0.96 0.93 0.96 0.95 0.01 

14 4 0.75 0.74 0.75 0.75 0.01 

22.5 6 0.63 0.63 0.62 0.63 0.01 

35.25 9 0.50 0.51 0.50 0.50 0.01 

 

 

 

Table B.70. Storm event #4 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.64 0.61 0.63 0.62 0.02 

1.25 1 0.98 0.96 0.98 0.97 0.01 

4 2 0.55 0.56 0.57 0.56 0.01 

8.25 3 0.59 0.57 0.59 0.58 0.01 

14 4 0.49 0.46 0.49 0.48 0.02 

22.5 6 0.48 0.48 0.49 0.49 0.01 

35.25 9 0.50 0.51 0.50 0.50 0.01 

 

 

 

Table B.71. Storm event #4 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.78 0.74 0.76 0.76 0.02 

1.25 1 1.07 1.06 1.13 1.09 0.04 

4 2 0.76 0.78 0.78 0.77 0.01 

8.25 3 0.59 0.63 0.65 0.62 0.03 

14 4 0.54 0.53 0.54 0.54 0.01 

22.5 6 0.50 0.48 0.48 0.49 0.01 

35.25 9 0.45 0.44 0.45 0.45 0.01 
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Table B.72. Storm event #4 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 5.02 4.89 4.85 4.92 0.09 

1.25 1 5.25 5.20 5.23 5.22 0.02 

4 2 4.98 4.94 5.16 5.02 0.11 

8.25 3 5.61 5.42 5.56 5.53 0.10 

14 4 4.79 4.72 4.84 4.78 0.06 

22.5 6 4.93 4.80 4.80 4.84 0.07 

35.25 9 4.95 4.81 4.84 4.87 0.07 

 

 

 

Table B.73. Storm event #4 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 24.65 24.36 24.77 24.59 0.21 

1.25 1 16.30 15.86 16.28 16.15 0.25 

4 2 5.73 5.87 5.99 5.86 0.13 

8.25 3 5.69 5.49 5.70 5.63 0.12 

14 4 4.95 5.04 5.05 5.01 0.05 

22.5 6 5.25 5.26 5.45 5.32 0.11 

35.25 9 5.63 5.67 5.61 5.64 0.03 

 

 

 

Table B.74. Storm event #4 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 50.37 48.49 49.26 49.38 0.95 

1.25 1 22.64 21.80 21.98 22.14 0.44 

4 2 5.72 5.57 5.79 5.70 0.11 

8.25 3 5.55 5.52 5.64 5.57 0.06 

14 4 5.20 5.14 5.34 5.23 0.10 

22.5 6 6.22 5.96 6.22 6.13 0.15 

35.25 9 6.18 6.11 6.30 6.20 0.10 
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Table B.75. Storm event #4 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 41.97 41.56 41.40 41.64 0.29 

1.25 1 18.65 18.81 18.85 18.77 0.10 

4 2 5.83 5.78 6.01 5.87 0.13 

8.25 3 5.83 5.75 5.92 5.84 0.09 

14 4 5.15 5.06 5.03 5.08 0.06 

22.5 6 5.50 5.63 5.70 5.61 0.10 

35.25 9 5.59 5.59 5.59 5.59 0.00 

 

 

 

Table B.76. Storm event #4 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 6.45 0.04 0.11 0 

1.25 1 4.99 0.1 0 0 

4 2 5.1 0.09 0.08 0.07 

8.25 3 5.2 0 0 0 

14 4 5.09 0 0.04 0 

22.5 6 5.08 0 0.02 0.05 

35.25 9 5.73 0.05 0 0 

 

 

 

Table B.77. Storm event #4 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 7.89 6.59 6.48 6.6 

1.25 1 7.86 6.79 6.66 6.88 

4 2 8.09 7.03 7.02 7.15 

8.25 3 7.9 7.06 7.01 7.13 

14 4 7.75 7.01 7 7.22 

22.5 6 7.86 7.14 7.13 7.45 

35.25 9 7.56 6.94 6.93 7.13 
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Table B.78. Storm event #4 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.00 0.10 0.05 0.06 

1.25 1 0.00 0.10 0.07 0.09 

4 2 0.00 0.02 0.00 0.03 

8.25 3 0.00 0.03 0.03 0.03 

14 4 0.00 0.03 0.03 0.03 

22.5 6 0.00 0.05 0.03 0.04 

35.25 9 0.00 0.03 0.00 0.05 

 

 

 

Table B.79. Storm event #4 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.02 0.06 0.06 0.07 

1.25 1 0.01 0.05 0.06 0.04 

4 2 0.05 0.10 0.05 0.12 

8.25 3 0.01 0.05 0.03 0.13 

14 4 0.02 0.03 0.02 0.10 

22.5 6 0.01 0.07 0.03 0.06 

35.25 9 0.03 0.02 0.05 0.04 

 

 

 

Table B.80. Storm event #4 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 2.06 0.01 0.02 0.01 

1.25 1 1.89 0.47 0.43 0.46 

4 2 1.90 0.15 0.09 0.46 

8.25 3 1.90 0.06 0.05 0.31 

14 4 1.91 0.03 0.02 0.20 

22.5 6 1.91 0.01 0.01 0.13 

35.25 9 1.91 0.03 0.05 0.04 

 

 

 

 

 

 



www.manaraa.com

172 
 

Table B.81. Storm event #4 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.28 0.59 0.50 0.51 

1.25 1 0.37 0.47 0.42 0.41 

4 2 0.34 0.50 0.42 0.41 

8.25 3 0.48 0.49 0.48 0.48 

14 4 0.43 0.44 0.41 0.41 

22.5 6 0.39 0.36 0.41 0.40 

35.25 9 0.37 0.37 0.39 0.38 

 

 

 

Table B.82. Storm event #4 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.12 0.28 0.19 0.22 

1.25 1 0.13 0.17 0.13 0.18 

4 2 0.13 0.00 0.00 0.00 

8.25 3 0.13 0.00 0.00 0.00 

14 4 0.13 0.00 0.00 0.00 

22.5 6 0.13 0.00 0.00 0.00 

35.25 9 0.13 0.05 0.04 0.04 

 

 

 

Table B.83. Storm event #4 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 69.98 2.35 2.62 4.33 

1.25 1 70.81 48.07 41.57 37.67 

4 2 71.35 70.45 70.16 70.38 

8.25 3 71.08 71.95 76.34 70.99 

14 4 70.45 71.95 70.85 71.87 

22.5 6 70.35 70.72 70.12 71.13 

35.25 9 70.67 69.40 68.72 70.39 
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Table B.84. Storm event #4 TSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.72 1.73 1.29 1.45 

1.25 1 10.30 2.16 2.57 2.48 

4 2 7.01 1.81 2.48 3.33 

8.25 3 6.11 1.97 2.42 2.32 

14 4 6.72 1.83 1.72 1.92 

22.5 6 5.44 1.68 1.70 0.94 

35.25 9 4.98 1.32 1.31 1.56 

 

 

 

Table B.85. Storm event #4 VSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.29 0.09 0.00 0.00 

1.25 1 4.12 0.40 0.18 0.38 

4 2 0.86 0.31 0.55 0.91 

8.25 3 3.77 0.40 0.20 0.41 

14 4 2.28 0.38 0.38 0.22 

22.5 6 1.34 0.76 0.22 0.00 

35.25 9 1.32 0.01 0.00 0.00 

 

 

 

Table B.86. Storm event #5 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

1 29.27 29.5 29.5 29.5 

2 14.63 14.75 14.75 14.75 

3 9.76 9.75 9.75 9.75 

4 7.32 7.25 7.25 7.25 

6 4.88 5 5 5 

9 3.25 3.25 3.25 3.25 
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Table B.87. Storm event #5 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 44.43 44.5 44 44.25 

2 22.22 22 21.5 21.75 

3 14.81 14.75 14.75 14.75 

4 11.11 11.25 11 11.1 

6 7.41 7.5 8 7.75 

9 4.94 5 4.5 4.75 

 

 

 

Table B.88. Storm event #5 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 59.33 59.5 61 60.25 

2 29.67 29.5 29 29.25 

3 19.78 19.5 20 19.75 

4 14.83 14.75 14.75 14.75 

6 9.89 10 10.25 10.1 

9 6.59 6.5 5.75 12.25 

 

 

 

Table B.89. Storm event #5 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 2.29 2.28 2.36 2.31 0.05 

1.25 1 2.28 2.32 2.38 2.33 0.05 

4 2 2.35 2.38 2.31 2.35 0.03 

8.25 3 2.35 2.26 2.31 2.31 0.05 

14 4 2.37 2.31 2.40 2.36 0.04 

22.5 6 2.22 2.17 2.24 2.21 0.04 

35.25 9 2.28 2.23 2.30 2.27 0.04 
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Table B.90. Storm event #5 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.60 0.61 0.62 0.61 0.01 

1.25 1 1.27 1.25 1.30 1.27 0.02 

4 2 1.53 1.57 1.58 1.56 0.02 

8.25 3 1.28 1.35 1.31 1.31 0.03 

14 4 1.09 1.08 1.11 1.09 0.01 

22.5 6 0.64 0.64 0.66 0.64 0.01 

35.25 9 0.65 0.64 0.65 0.64 0.01 

 

 

 

Table B.91. Storm event #5 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.50 0.49 0.48 0.49 0.01 

1.25 1 1.51 1.49 1.47 1.49 0.02 

4 2 1.46 1.42 1.44 1.44 0.02 

8.25 3 0.97 0.99 0.99 0.98 0.01 

14 4 0.56 0.59 0.55 0.57 0.02 

22.5 6 0.51 0.50 0.52 0.51 0.01 

35.25 9 0.55 0.53 0.55 0.54 0.01 

 

 

 

Table B.92. Storm event #5 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.51 0.52 0.53 0.52 0.01 

1.25 1 1.64 1.65 1.71 1.67 0.04 

4 2 1.53 1.53 1.50 1.52 0.02 

8.25 3 0.91 0.92 0.93 0.92 0.01 

14 4 0.56 0.56 0.58 0.56 0.01 

22.5 6 0.61 0.64 0.64 0.63 0.02 

35.25 9 0.77 0.75 0.75 0.75 0.01 
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Table B.93. Storm event #5 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 4.95 4.81 4.84 4.87 0.07 

1.25 1 4.84 4.75 4.74 4.78 0.05 

4 2 4.89 4.84 4.73 4.82 0.08 

8.25 3 5.37 5.30 5.35 5.34 0.04 

14 4 5.86 5.98 5.91 5.92 0.06 

22.5 6 5.85 5.87 5.83 5.85 0.02 

35.25 9 6.01 5.77 5.84 5.87 0.13 

 

 

 

Table B.94. Storm event #5 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 5.57 5.55 5.62 5.58 0.04 

1.25 1 5.45 5.29 5.25 5.33 0.11 

4 2 5.04 4.84 4.95 4.94 0.10 

8.25 3 4.85 4.85 4.93 4.88 0.05 

14 4 5.84 5.86 5.98 5.89 0.07 

22.5 6 5.72 5.86 5.97 5.85 0.12 

35.25 9 6.09 5.87 5.99 5.98 0.11 

 

 

 

Table B.95. Storm event #5 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 5.63 5.62 5.78 5.68 0.09 

1.25 1 5.84 5.71 5.80 5.79 0.06 

4 2 4.67 4.59 4.60 4.62 0.04 

8.25 3 4.81 4.66 4.72 4.73 0.07 

14 4 4.92 5.10 5.10 5.04 0.10 

22.5 6 5.36 5.39 5.40 5.38 0.02 

35.25 9 6.11 6.10 6.11 6.10 0.01 
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Table B.96. Storm event #5 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 5.85 5.81 5.95 5.87 0.07 

1.25 1 5.94 5.71 5.80 5.82 0.11 

4 2 4.75 4.69 4.64 4.69 0.06 

8.25 3 4.74 4.68 4.74 4.72 0.03 

14 4 4.99 4.96 5.11 5.02 0.08 

22.5 6 6.66 6.47 6.67 6.60 0.11 

35.25 9 6.98 6.85 6.87 6.90 0.07 

 

 

 

Table B.97. Storm event #5 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 5.73 0 0.19 0 

1.25 1 5.73 0 0.48 0.56 

4 2 5.24 0 0 0.31 

8.25 3 4.47 0 0 0 

14 4 5.42 0 0.15 0 

22.5 6 5.31 0 0 0 

35.25 9 5.60 0 0 0 

 

 

 

Table B.98. Storm event #5 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 7.56 7.05 7.04 7.09 

1.25 1 7.56 7.02 7.02 7.09 

4 2 7.8 6.92 6.98 7.07 

8.25 3 7.51 6.86 7 7.13 

14 4 7.39 7.05 7.04 7.15 

22.5 6 7.34 7.08 7.05 7.23 

35.25 9 7.29 7.01 7.03 7.19 
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Table B.99. Storm event #5 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.00 0.08 0.05 0.08 

1.25 1 0.02 0.03 0.03 0.05 

4 2 0.00 0.00 0.03 0.03 

8.25 3 0.00 0.03 0.03 0.03 

14 4 0.00 0.05 0.04 0.05 

22.5 6 0.00 0.15 0.10 0.14 

35.25 9 0.18 0.19 0.09 0.19 

 

 

 

Table B.100. Storm event #5 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.03 0.05 0.05 0.02 

1.25 1 0.02 0.02 0.02 0.02 

4 2 0.01 0.16 0.16 0.15 

8.25 3 0.01 0.28 0.25 0.20 

14 4 0.01 0.02 0.00 0.16 

22.5 6 0.02 0.01 0.04 0.04 

35.25 9 0.03 0.04 0.05 0.02 

 

 

 

Table B.101. Storm event #5 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.91 0.01 0.01 0.12 

1.25 1 1.76 1.04 0.84 0.73 

4 2 1.91 0.92 0.84 0.94 

8.25 3 1.93 0.18 0.31 0.61 

14 4 1.86 0.03 0.09 0.36 

22.5 6 1.82 0.01 0.01 0.02 

35.25 9 1.82 0.01 0.00 0.02 
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Table B.102. Storm event #5 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.37 0.39 0.39 0.39 

1.25 1 0.53 0.57 0.59 0.47 

4 2 0.42 0.44 0.41 0.44 

8.25 3 0.37 0.44 0.40 0.47 

14 4 0.49 0.47 0.44 0.52 

22.5 6 0.36 0.46 0.36 0.44 

35.25 9 0.25 0.51 0.41 0.41 

 

 

 

Table B.103. Storm event #5 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.13 0.07 0.06 0.06 

1.25 1 0.13 0.04 0.04 0.06 

4 2 0.13 0.00 0.00 0.03 

8.25 3 0.12 0.00 0.00 0.03 

14 4 0.12 0.00 0.00 0.03 

22.5 6 0.11 0.08 0.07 0.07 

35.25 9 0.22 0.23 0.15 0.16 

 

 

 

Table B.104. Storm event #5 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 70.67 69.51 68.94 70.37 

1.25 1 65.82 71.93 71.65 70.78 

4 2 71.41 73.62 73.42 73.29 

8.25 3 72.11 74.05 73.75 73.61 

14 4 70.80 73.26 71.97 72.82 

22.5 6 72.33 73.03 71.55 70.92 

35.25 9 62.56 67.27 68.14 69.48 
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Table B.105. Storm event #5 TSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 4.98 1.27 1.87 2.85 

1.25 1 5.59 3.92 4.70 3.83 

4 2 8.41 2.37 3.68 2.88 

8.25 3 9.20 2.16 2.49 2.98 

14 4 11.33 2.28 1.83 3.07 

22.5 6 9.96 2.18 2.47 1.93 

35.25 9 5.49 1.49 2.16 2.92 

 

 

 

Table B.106. Storm event #5 VSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.32 0.22 0.68 0.89 

1.25 1 1.38 1.00 1.31 0.92 

4 2 2.16 0.73 0.83 0.67 

8.25 3 2.02 1.09 0.47 0.68 

14 4 1.82 0.29 0.28 0.45 

22.5 6 1.76 0.08 0.84 0.75 

35.25 9 1.00 0.00 0.59 0.54 

 

 

 

Table B.107. Storm event #6 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

1 29.27 29.5 30.5 30.0 

2 14.63 14.5 14.6 14.6 

3 9.76 9.75 9.6 9.7 

4 7.32 7.5 7.4 7.5 

6 4.88 4.5 5.25 4.9 

9 3.25 3.25 3.25 3.25 
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Table B.108. Storm event #6 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 44.43 44.5 44.5 44.5 

2 22.22 22.5 22 22.25 

3 14.81 14.5 14.5 14.5 

4 11.11 11.25 11 11.1 

6 7.41 7.5 7.6 7.6 

9 4.94 5.25 5.25 5.25 

 

 

 

Table B.109. Storm event #6 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 59.33 59.3 60.5 59.9 

2 29.67 29.5 29 29.25 

3 19.78 19.5 19 19.25 

4 14.83 14.75 15 14.9 

6 9.89 9.75 9.5 9.6 

9 6.59 6.75 6.75 6.8 

 

 

 

Table B.110. Storm event #6 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 2.28 2.23 2.30 2.27 0.04 

1.25 1 4.07 3.95 3.98 4.00 0.06 

4 2 4.17 4.30 4.30 4.26 0.07 

8.25 3 4.32 4.21 4.20 4.24 0.06 

14 4 4.06 4.12 4.20 4.13 0.07 

22.5 6 4.04 4.01 4.18 4.08 0.09 

35.25 9 4.26 4.13 4.24 4.21 0.07 
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Table B.111. Storm event #6 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.68 0.70 0.69 0.69 0.01 

1.25 1 1.84 1.78 1.78 1.80 0.04 

4 2 2.05 2.06 2.06 2.06 0.00 

8.25 3 1.95 1.95 1.98 1.96 0.02 

14 4 1.81 1.76 1.82 1.80 0.03 

22.5 6 1.18 1.18 1.14 1.17 0.02 

35.25 9 0.63 0.62 0.63 0.62 0.00 

 

 

 

Table B.112. Storm event #6 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.66 0.67 0.66 0.66 0.00 

1.25 1 1.69 1.64 1.69 1.68 0.03 

4 2 1.67 1.71 1.73 1.70 0.03 

8.25 3 1.49 1.50 1.48 1.49 0.01 

14 4 1.23 1.26 1.27 1.25 0.02 

22.5 6 0.48 0.47 0.49 0.48 0.01 

35.25 9 0.49 0.46 0.48 0.48 0.01 

 

 

 

Table B.113. Storm event #6 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.79 0.79 0.80 0.79 0.01 

1.25 1 1.93 1.88 1.89 1.90 0.03 

4 2 1.95 1.88 1.91 1.91 0.04 

8.25 3 1.54 1.52 1.52 1.52 0.01 

14 4 1.35 1.38 1.34 1.36 0.02 

22.5 6 0.59 0.54 0.57 0.57 0.03 

35.25 9      
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Table B.114. Storm event #6 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 6.01 5.77 5.84 5.87 0.13 

1.25 1 4.95 4.86 4.84 4.88 0.06 

4 2 5.17 5.13 5.24 5.18 0.06 

8.25 3 5.15 4.86 5.10 5.04 0.15 

14 4 4.96 5.13 5.09 5.06 0.09 

22.5 6 5.05 4.97 5.05 5.02 0.05 

35.25 9 5.46 5.45 5.35 5.42 0.06 

 

 

 

Table B.115. Storm event #6 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 27.89 27.74 27.26 27.63 0.33 

1.25 1 14.17 14.73 14.31 14.40 0.29 

4 2 5.17 5.01 5.05 5.08 0.08 

8.25 3 4.65 4.60 4.62 4.62 0.02 

14 4 5.12 5.05 5.25 5.14 0.10 

22.5 6 5.33 5.22 5.16 5.24 0.09 

35.25 9 5.52 5.48 5.53 5.51 0.03 

 

 

 

Table B.116. Storm event #6 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 50.80 52.12 52.28 51.73 0.81 

1.25 1 19.41 18.88 19.21 19.17 0.27 

4 2 5.76 5.78 5.95 5.83 0.10 

8.25 3 5.39 5.23 5.22 5.28 0.10 

14 4 4.42 4.34 4.29 4.35 0.06 

22.5 6 5.48 5.49 5.46 5.48 0.01 

35.25 9 5.18 5.26 5.25 5.23 0.04 
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Table B.117. Storm event #6 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 43.98 44.28 44.10 44.12 0.15 

1.25 1 16.37 16.44 16.14 16.32 0.16 

4 2 5.14 5.00 5.06 5.06 0.07 

8.25 3 5.22 5.21 5.31 5.25 0.06 

14 4 4.28 4.26 4.19 4.24 0.05 

22.5 6 5.20 5.03 5.08 5.10 0.09 

35.25 9      

 

 

 

Table B.118. Storm event #6 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 5.6 0.08 0 0 

1.25 1 6.07 0 0.02 0.02 

4 2 6.08 0.05 0.08 0.12 

8.25 3 5.69 0.06 0.04 0.03 

14 4 5.44 0.21 0.25 0.23 

22.5 6 5.36 0.2 0.18 0.17 

35.25 9 5.83 0.09 0.11 0.37 

 

 

 

Table B.119. Storm event #6 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 7.29 6.75 6.77 7.04 

1.25 1 8.05 6.88 7.04 7.04 

4 2 8.1 7.13 7.11 7.29 

8.25 3 8.09 7.15 7.15 7.3 

14 4 7.91 7.19 7.25 7.37 

22.5 6 7.7 7.23 7.23 7.39 

35.25 9 7.54 7.15 7.12 7.39 
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Table B.120. Storm event #6 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.17 0.14 0.04 0.05 

1.25 1 0.00 0.18 0.10 0.09 

4 2 0.00 0.08 0.02 0.07 

8.25 3 0.00 0.04 0.06 0.06 

14 4 0.00 0.06 0.06 0.06 

22.5 6 0.00 0.08 0.06 0.06 

35.25 9 0.00 0.11 0.07 0.08 

 

 

 

Table B.121. Storm event #6 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.03 0.12 0.11 0.11 

1.25 1 0.02 0.06 0.07 0.06 

4 2 0.03 0.46 0.39 0.26 

8.25 3 0.03 0.56 0.44 0.37 

14 4 0.02 0.46 0.36 0.33 

22.5 6 0.03 0.05 0.05 0.17 

35.25 9 0.03 0.05 0.05 0.03 

 

 

 

Table B.122. Storm event #6 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.78 0.04 0.01 0.04 

1.25 1 3.80 1.33 1.20 1.32 

4 2 3.84 1.03 0.84 1.32 

8.25 3 3.99 0.56 0.63 1.25 

14 4 3.78 0.51 0.48 1.09 

22.5 6 3.83 0.03 0.01 0.56 

35.25 9 3.93 0.01 0.01 0.10 
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Table B.123. Storm event #6 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.29 0.49 0.50 0.49 

1.25 1 0.18 0.33 0.31 0.33 

4 2 0.38 0.33 0.45 0.41 

8.25 3 0.23 0.37 0.36 0.28 

14 4 0.32 0.32 0.35 0.31 

22.5 6 0.22 0.41 0.36 0.34 

35.25 9 0.25 0.31 0.35 0.40 

 

 

 

Table B.124. Storm event #6 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.21 0.42 0.40 0.36 

1.25 1 0.11 0.22 0.16 0.18 

4 2 0.11 0.00 0.00 0.03 

8.25 3 0.12 0.00 0.00 0.00 

14 4 0.11 0.00 0.00 0.00 

22.5 6 0.12 0.00 0.00 0.00 

35.25 9 0.12 0.04 0.03 0.04 

 

 

 

Table B.125. Storm event #6 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 69.85 2.59 1.89 2.92 

1.25 1 65.91 42.96 41.13 38.31 

4 2 66.67 68.58 65.44 59.83 

8.25 3 68.19 69.15 69.38 69.99 

14 4 65.16 67.97 67.23 66.16 

22.5 6 65.50 67.43 67.37 67.14 

35.25 9 67.57 64.29 64.14 66.61 
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Table B.126. Storm event #6 TSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 5.49 1.27 1.64 2.51 

1.25 1 7.66 2.74 2.46 4.44 

4 2 8.53 3.19 3.36 3.65 

8.25 3 9.39 2.86 3.01 3.95 

14 4 10.72 2.80 2.68 3.63 

22.5 6 9.36 2.74 2.36 3.30 

35.25 9 1.78 2.13 2.64 1.78 

 

 

 

Table B.127. Storm event #6 VSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.00 0.00 0.01 0.74 

1.25 1 2.30 0.84 0.65 0.42 

4 2 2.17 0.99 1.72 0.68 

8.25 3 3.12 0.71 1.18 2.47 

14 4 2.82 0.54 0.87 1.48 

22.5 6 2.48 0.38 0.56 0.50 

35.25 9 1.46 0.93 0.18 0.89 

 

 

 

Table B.128. Storm event #7 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

0.25 117.1 116  116 

0.5 58.5 56  56 

0.75 39 39  39 

1 29.3 29  29 

2 14.6 14.5  14.5 

3 9.8 9.5  9.5 
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Table B.129. Storm event #7 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

0.25 177.7 180  180 

0.5 88.9 88  88 

0.75 59.2 59  59 

1 44.4 44  44 

2 22.2 21.5  21.5 

3 14.8 14.8  14.8 

 

 

 

Table B.130. Storm event #7 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

0.25 237.3 244  244 

0.5 118.7 120  120 

0.75 79.1 78  78 

1 59.3 59  59 

2 29.7 29.5  29.5 

3 19.8 19  19 

 

 

 

Table B.131. Storm event #7 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.1 - 4.26 4.13 4.24 4.21 0.07 

0.31 0.25 2.17 2.16 2.24 2.19 0.04 

1 0.5 2.32 2.25 2.33 2.30 0.04 

2.1 0.75 2.38 2.34 2.33 2.35 0.03 

3.5 1 2.30 2.24 2.31 2.28 0.04 

6.25 2 2.19 2.21 2.16 2.19 0.03 

10.5 3 2.31 2.35 2.39 2.35 0.04 
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Table B.132. Storm event #7 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.1 - 0.60 0.62 0.61 0.61 0.01 

0.31 0.25 1.21 1.18 1.21 1.20 0.02 

1 0.5 1.83 1.80 1.87 1.83 0.03 

2.1 0.75 1.83 1.83 1.81 1.82 0.01 

3.5 1 1.54 1.49 1.52 1.52 0.02 

6.25 2 1.17 1.13 1.20 1.17 0.03 

10.5 3 0.78 0.80 0.79 0.79 0.01 

 

 

 

Table B.133. Storm event #7 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.1 - 0.65 0.64 0.68 0.66 0.02 

0.31 0.25 1.47 1.49 1.47 1.47 0.01 

1 0.5 1.77 1.73 1.78 1.76 0.03 

2.1 0.75 1.69 1.71 1.75 1.72 0.03 

3.5 1 1.63 1.61 1.62 1.62 0.01 

6.25 2 1.07 1.08 1.11 1.09 0.02 

10.5 3 0.54 0.57 0.55 0.55 0.02 

 

 

 

Table B.134. Storm event #7 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.1 - 0.75 0.72 0.74 0.74 0.01 

0.31 0.25 1.46 1.51 1.51 1.49 0.03 

1 0.5 1.87 1.90 1.90 1.89 0.01 

2.1 0.75 1.82 1.75 1.78 1.78 0.03 

3.5 1 1.60 1.57 1.66 1.61 0.05 

6.25 2 1.09 1.07 1.12 1.09 0.02 

10.5 3 0.53 0.49 0.53 0.52 0.02 

 

 

 

 

 

 



www.manaraa.com

190 
 

Table B.135. Storm event #7 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.1 - 5.46 5.45 5.35 5.42 0.06 

0.31 0.25 4.43 4.50 4.53 4.49 0.05 

1 0.5 5.14 5.06 5.05 5.08 0.05 

2.1 0.75 4.29 4.15 4.20 4.22 0.07 

3.5 1 4.44 4.33 4.32 4.36 0.06 

6.25 2 4.37 4.45 4.46 4.43 0.05 

10.5 3 4.89 4.70 4.81 4.80 0.10 

 

 

 

Table B.136. Storm event #7 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.1 - 21.87 22.65 22.36 22.29 0.39 

0.31 0.25 13.60 13.56 13.85 13.67 0.16 

1 0.5 5.42 5.30 5.47 5.40 0.09 

2.1 0.75 5.07 4.98 5.01 5.02 0.05 

3.5 1 4.09 4.12 4.19 4.13 0.05 

6.25 2 4.11 4.11 4.18 4.13 0.04 

10.5 3 4.47 4.40 4.43 4.43 0.04 

 

 

 

Table B.137. Storm event #7 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.1 - 40.47 39.09 40.24 39.93 0.74 

0.31 0.25 16.01 15.63 15.98 15.87 0.21 

1 0.5 4.62 4.64 4.72 4.66 0.05 

2.1 0.75 4.21 4.21 4.27 4.23 0.03 

3.5 1 4.92 4.80 4.89 4.87 0.06 

6.25 2 4.53 4.47 4.50 4.50 0.03 

10.5 3 4.16 4.06 4.07 4.10 0.06 
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Table B.138. Storm event #7 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.1 - 34.69 35.39 35.01 35.03 0.35 

0.31 0.25 12.82 12.54 12.96 12.78 0.21 

1 0.5 4.22 4.28 4.28 4.26 0.03 

2.1 0.75 4.64 4.65 4.80 4.70 0.09 

3.5 1 4.15 4.19 4.27 4.20 0.06 

6.25 2 3.99 4.01 4.11 4.04 0.07 

10.5 3 4.52 4.42 4.38 4.44 0.07 

 

 

 

Table B.139. Storm event #7 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 5.83 0.14 0.2 0.15 

0.31 0.25 7.48 1.02 1.1 1.1 

1 0.5 5.62 0.76   

2.1 0.75 5.73 0.5 0.4 0.34 

3.5 1 4.89 0.1 0.15 0.2 

6.25 2 5.41 0.1 0.02 0.21 

10.5 3 5.72 0.12 0.07 0.13 

 

 

 

Table B.140. Storm event #7 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 7.54 6.96 6.83 6.97 

0.31 0.25 7.49 7.02 7.01 6.88 

1 0.5 7.53 7.12 7.03 7.16 

2.1 0.75 7.5 7.1 7.07 7.18 

3.5 1 7.55 7.06 7.04 7.13 

6.25 2 7.56 7.05 7.12 7.23 

10.5 3 7.6 7.11 7.14 7.31 
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Table B.141. Storm event #7 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 0.00 0.16 0.10 0.09 

0.31 0.25 0.00 0.10 0.06 0.06 

1 0.5 0.00 0.06 0.00 0.02 

2.1 0.75 0.00 0.00 0.00 0.00 

3.5 1 0.04 0.00 0.00 0.00 

6.25 2 0.00 0.00 0.00 0.00 

10.5 3 0.00 0.02 0.01 0.02 

 

 

 

Table B.142. Storm event #7 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 0.03 0.09 0.09 0.10 

0.31 0.25 0.02 0.05 0.05 0.07 

1 0.5 0.03 0.04 0.03 0.03 

2.1 0.75 0.02 0.01 0.01 0.02 

3.5 1 0.02 0.00 0.00 0.00 

6.25 2 0.02 0.25 0.18 0.20 

10.5 3 0.03 0.00 0.00 0.00 

 

 

 

Table B.143. Storm event #7 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 3.98 0.01 0.03 0.04 

0.31 0.25 2.03 1.14 1.13 0.85 

1 0.5 1.98 1.56 1.46 1.47 

2.1 0.75 1.97 1.40 1.34 1.38 

3.5 1 2.03 1.28 1.18 1.23 

6.25 2 2.02 0.49 0.55 0.60 

10.5 3 2.01 0.03 0.11 0.30 

 

 

 

 

 

 



www.manaraa.com

193 
 

Table B.144. Storm event #7 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 0.20 0.48 0.43 0.38 

0.31 0.25 0.14 0.21 0.23 0.22 

1 0.5 0.30 0.23 0.26 0.31 

2.1 0.75 0.36 0.36 0.37 0.43 

3.5 1 0.20 0.33 0.43 0.29 

6.25 2 0.14 0.36 0.36 0.37 

10.5 3 0.30 0.47 0.44 0.47 

 

 

 

Table B.145. Storm event #7 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 0.12 0.35 0.19 0.30 

0.31 0.25 0.17 0.24 0.20 0.21 

1 0.5 0.16 0.04 0.04 0.06 

2.1 0.75 0.15 0.00 0.00 0.00 

3.5 1 0.16 0.00 0.00 0.00 

6.25 2 0.16 0.00 0.00 0.00 

10.5 3 0.15 0.00 0.00 0.00 

 

 

 

Table B.146. Storm event #7 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 68.80 1.89 2.07 3.10 

0.31 0.25 65.08 43.84 42.54 34.82 

1 0.5 64.08 64.70 64.22 62.86 

2.1 0.75 64.26 65.12 64.11 63.87 

3.5 1 64.53 63.82 64.59 64.03 

6.25 2 64.42 65.25 64.74 65.87 

10.5 3 65.07 65.42 66.22 67.41 
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Table B.147. Storm event #7 TSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 7.64 2.56 1.56 3.06 

0.31 0.25 4.32 2.12 3.34 6.02 

1 0.5 6.05 3.00 4.53 2.62 

2.1 0.75 5.76 3.32 2.69 3.67 

3.5 1 4.57 3.09 3.42 3.07 

6.25 2 4.70 2.68 3.87 3.33 

10.5 3 3.73 2.67 2.72 3.58 

 

 

 

Table B.148. Storm event #7 VSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.1 - 1.46 0.70 0.00 1.74 

0.31 0.25 1.47 0.74 0.60 1.98 

1 0.5 2.03 0.64 1.15 0.67 

2.1 0.75 1.84 0.49 1.39 1.16 

3.5 1 1.84 1.03 1.00 0.78 

6.25 2 1.59 0.58 1.23 1.18 

10.5 3 1.08 0.00 0.83 0.72 

 

 

 

Table B.149. Storm event #8 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

1 29.27 29.5  29.5 

1 29.27 30  30 

1 29.27 30  30 

1 29.27 30  30 

1 29.27 30  30 

1 29.27 30  30 
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Table B.150. Storm event #8 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 44.43 44.5  44.5 

1 44.43 44.5  44.5 

1 44.43 45  45 

1 44.43 45  45 

1 44.43 45  45 

1 44.43 45  45 

 

 

 

Table B.151. Storm event #8 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 59.33 59.5  59.5 

1 59.33 59.5  59.5 

1 59.33 60  60 

1 59.33 60  60 

1 59.33 60  60 

1 59.33 60  60 

 

 

 

Table B.152. Storm event #8 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 2.31 2.35 2.39 2.35 0.04 

1.25 1 2.28 2.20 2.31 2.26 0.06 

1.5 1 2.22 2.22 2.27 2.24 0.03 

2 1 2.29 2.25 2.22 2.25 0.03 

3 1 2.17 2.17 2.26 2.20 0.05 

5 1 2.16 2.22 2.22 2.20 0.03 

9 1 2.17 2.18 2.18 2.18 0.01 
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Table B.153. Storm event #8 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.57 0.56 0.57 0.57 0.00 

1.25 1 0.84 0.83 0.83 0.83 0.01 

1.5 1 0.97 0.96 0.95 0.96 0.01 

2 1 1.05 1.09 1.10 1.08 0.03 

3 1 1.26 1.27 1.31 1.28 0.02 

5 1 1.46 1.54 1.53 1.51 0.04 

9 1 1.67 1.67 1.71 1.69 0.02 

 

 

 

Table B.154. Storm event #8 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.61 0.61 0.63 0.61 0.01 

1.25 1 0.78 0.78 0.80 0.79 0.01 

1.5 1 0.95 0.95 0.96 0.95 0.01 

2 1 0.80 0.80 0.85 0.82 0.03 

3 1 1.17 1.14 1.16 1.15 0.02 

5 1 1.74 1.75 1.73 1.74 0.01 

9 1 1.80 1.77 1.83 1.80 0.03 

 

 

 

Table B.155. Storm event #8 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.62 0.61 0.64 0.62 0.02 

1.25 1 0.81 0.79 0.81 0.80 0.01 

1.5 1 0.87 0.84 0.86 0.86 0.02 

2 1 1.06 1.05 1.10 1.07 0.03 

3 1 1.24 1.23 1.25 1.24 0.01 

5 1 1.47 1.48 1.50 1.48 0.02 

9 1 1.78 1.77 1.82 1.79 0.03 
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Table B.156. Storm event #8 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 4.89 4.70 4.81 4.80 0.10 

1.25 1 4.77 4.72 4.87 4.78 0.08 

1.5 1 4.57 4.66 4.66 4.63 0.05 

2 1 4.77 4.80 4.80 4.79 0.02 

3 1 4.50 4.36 4.49 4.45 0.08 

5 1 4.50 4.45 4.39 4.45 0.05 

9 1 4.20 4.28 4.36 4.28 0.08 

 

 

 

Table B.157. Storm event #8 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 25.63 26.19 25.81 25.88 0.29 

1.25 1 23.00 22.41 22.77 22.73 0.30 

1.5 1 10.08 9.76 9.95 9.93 0.16 

2 1 5.85 5.78 5.77 5.80 0.04 

3 1 4.80 4.72 4.84 4.79 0.07 

5 1 4.47 4.38 4.36 4.40 0.06 

9 1 4.33 4.20 4.36 4.30 0.09 

 

 

 

Table B.158. Storm event #8 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 47.52 46.57 47.36 47.15 0.51 

1.25 1 32.49 32.34 33.67 32.83 0.73 

1.5 1 12.58 12.78 12.93 12.77 0.18 

2 1 6.12 6.04 6.20 6.12 0.08 

3 1 4.75 4.63 4.65 4.68 0.07 

5 1 5.06 5.04 5.22 5.10 0.10 

9 1 4.97 4.85 5.00 4.94 0.08 
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Table B.159. Storm event #8 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 45.05 44.21 44.62 44.63 0.42 

1.25 1 29.32 28.26 29.10 28.89 0.56 

1.5 1 9.93 9.71 9.79 9.81 0.11 

2 1 5.91 5.94 5.88 5.91 0.03 

3 1 4.40 4.41 4.44 4.42 0.02 

5 1 4.21 4.27 4.20 4.23 0.03 

9 1 4.29 4.27 4.17 4.24 0.07 

 

 

 

Table B.160. Storm event #8 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 5.72 0.03 0.1 0 

1.25 1 4.53    

1.5 1 2.82    

2 1 4.8    

3 1 4.8    

5 1 4.95    

9 1 5.30 0.23 0.42 0.34 

 

 

 

Table B.161. Storm event #8 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 7.6 6.68 6.75 6.94 

1.25 1 7.48    

1.5 1 7.51    

2 1 7.59    

3 1 7.52    

5 1 7.52    

9 1 7.48    
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Table B.162. Storm event #8 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.00 0.06 0.05 0.03 

1.25 1 0.00 0.13 0.10 0.07 

1.5 1 0.00 0.22 0.23 0.14 

2 1 0.00 0.16 0.14 0.14 

3 1 0.00 0.04 0.08 0.04 

5 1 0.00 0.00 0.00 0.00 

9 1 0.00 0.00 0.00 0.00 

 

 

 

Table B.163. Storm event #8 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.03 0.16 0.16 0.11 

1.25 1 0.03 0.10 0.11 0.14 

1.5 1 0.03 0.06 0.06 0.09 

2 1 0.02 0.08 0.04 0.06 

3 1 0.03 0.06 0.06 0.07 

5 1 0.03 0.05 0.05 0.06 

9 1 0.03 0.03 0.06 0.04 

 

 

 

Table B.164. Storm event #8 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 1.95 0.02 0.04 0.03 

1.25 1 1.95 0.20 0.19 0.24 

1.5 1 1.96 0.22 0.25 0.44 

2 1 1.92 0.30 0.25 0.51 

3 1 1.90 0.66 0.58 0.77 

5 1 1.95 1.03 1.10 1.06 

9 1 1.96 1.37 1.36 1.10 
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Table B.165. Storm event #8 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.36 0.39 0.37 0.40 

1.25 1 0.29 0.37 0.39 0.38 

1.5 1 0.25 0.36 0.41 0.29 

2 1 0.31 0.53 0.38 0.37 

3 1 0.27 0.48 0.44 0.39 

5 1 0.22 0.40 0.58 0.39 

9 1 0.19 0.39 0.38 0.56 

 

 

 

Table B.166. Storm event #8 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.15 0.62 0.40 0.31 

1.25 1 0.17 0.43 0.39 0.22 

1.5 1 0.17 0.15 0.32 0.12 

2 1 0.17 0.07 0.13 0.06 

3 1 0.17 0.00 0.00 0.02 

5 1 0.17 0.00 0.00 0.00 

9 1 0.17 0.00 0.00 0.00 

 

 

 

Table B.167. Storm event #8 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 63.57 2.53 4.26 3.89 

1.25 1 67.67 21.38 21.27 20.54 

1.5 1 67.75 54.05 52.02 49.73 

2 1 66.57 64.11 60.05 59.76 

3 1 66.07 66.67 65.89 66.22 

5 1 67.23 67.04 70.31 70.78 

9 1 67.49 67.17 72.00 55.81 
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Table B.168. Storm event #9 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

1 29.27 30 30 30.0 

2 14.63 14.5 14.5 14.5 

3 9.76 10 10 10.0 

4 7.32 7 7 7.0 

6 4.88 4.75 4.75 4.75 

9 3.25 3.25 3.25 3.25 

 

 

 

Table B.169. Storm event #9 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 44.43 43 42 42.5 

2 22.22 21.5 21 21.25 

3 14.81 14.5 14.5 14.5 

4 11.11 11.25 11.25 11.25 

6 7.41 7.5 7.5 7.5 

9 4.94 5 5 5 

 

 

 

Table B.170. Storm event #9 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

1 59.33 60 60 60.0 

2 29.67 29.5 29.5 29.5 

3 19.78 19.5 19.5 19.5 

4 14.83 15 15 15 

6 9.89 10 10 10 

9 6.59 6.75 6.75 6.75 
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Table B.171. Storm event #9 Influent TN data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 2.17 2.18 2.18 2.18 0.01 

1.25 1 2.45 2.53 2.49 2.49 0.04 

4 2 2.35 2.29 2.35 2.33 0.03 

8.25 3 2.38 2.34 2.44 2.38 0.05 

14 4 2.35 2.35 2.38 2.36 0.02 

22.5 6 2.51 2.48 2.47 2.49 0.02 

35.25 9 2.43 2.46 2.44 2.44 0.02 

 

 

 

Table B.172. Storm event #9 TN data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.58 0.58 0.58 0.58 0.00 

1.25 1 1.31 1.24 1.24 1.27 0.04 

4 2 1.04 1.04 1.05 1.04 0.01 

8.25 3 0.99 1.04 1.06 1.03 0.03 

14 4 0.92 0.94 0.91 0.92 0.02 

22.5 6 0.74 0.76 0.77 0.76 0.02 

35.25 9 0.53 0.52 0.54 0.53 0.01 

 

 

 

Table B.173. Storm event #9 TN data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.65 0.68 0.67 0.67 0.01 

1.25 1 1.06 1.06 1.06 1.06 0.00 

4 2 0.61 0.62 0.64 0.62 0.01 

8.25 3 0.59 0.57 0.59 0.58 0.01 

14 4 0.64 0.62 0.65 0.64 0.02 

22.5 6 0.48 0.50 0.50 0.49 0.01 

35.25 9 0.47 0.44 0.45 0.45 0.02 
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Table B.174. Storm event #9 TN data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 0.59 0.61 0.61 0.60 0.01 

1.25 1 1.13 1.16 1.17 1.16 0.02 

4 2 0.66 0.69 0.68 0.68 0.01 

8.25 3 0.55 0.56 0.56 0.55 0.01 

14 4 0.53 0.56 0.57 0.55 0.02 

22.5 6 0.55 0.57 0.55 0.56 0.01 

35.25 9 0.44 0.44 0.43 0.44 0.01 

 

 

 

Table B.175. Storm event #9 Influent DOC data. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 4.20 4.28 4.36 4.28 0.08 

1.25 1 4.91 4.97 5.12 5.00 0.11 

4 2 4.85 4.75 4.94 4.85 0.10 

8.25 3 4.49 4.69 4.70 4.63 0.12 

14 4 4.95 4.86 4.98 4.93 0.06 

22.5 6 4.99 4.90 5.09 4.99 0.09 

35.25 9 4.67 4.63 4.76 4.68 0.06 

 

 

 

Table B.176. Storm event #9 DOC data for the 30 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 63.24 60.80 61.86 61.97 1.23 

1.25 1 21.39 21.05 21.22 21.22 0.17 

4 2 7.31 7.54 7.55 7.47 0.14 

8.25 3 5.88 5.78 5.65 5.77 0.12 

14 4 5.37 5.28 5.43 5.36 0.08 

22.5 6 5.82 5.77 5.80 5.80 0.03 

35.25 9 5.28 5.26 5.40 5.31 0.07 
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Table B.177. Storm event #9 DOC data for the 45 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 90.12 87.67 90.32 89.37 1.48 

1.25 1 30.68 30.07 30.77 30.51 0.38 

4 2 7.43 7.31 7.34 7.36 0.06 

8.25 3 5.56 5.41 5.57 5.51 0.09 

14 4 6.19 6.02 6.04 6.08 0.10 

22.5 6 5.91 5.73 5.79 5.81 0.09 

35.25 9 5.96 5.88 5.82 5.89 0.07 

 

 

 

Table B.178. Storm event #9 DOC data for the 60 cm column. 

Sample 

time (hr) 

Theoretical 

detention 

time (hr) 

Sample 1 

(mg/L) 

Sample 2 

(mg/L) 

Sample 3 

(mg/L) 

Average 

(mg/L) 

Standard 

deviation 

(mg/L) 

0.25 - 76.82 75.39 74.46 75.56 1.19 

1.25 1 20.28 20.00 20.60 20.29 0.30 

4 2 5.83 5.85 5.80 5.83 0.02 

8.25 3 4.79 4.91 4.84 4.85 0.06 

14 4 5.15 5.05 5.27 5.16 0.11 

22.5 6 5.60 5.42 5.64 5.55 0.12 

35.25 9 5.10 5.12 5.30 5.17 0.11 

 

 

 

Table B.179. Storm event #9 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 5.3    

1.25 1 5.89    

4 2 6.39    

8.25 3 5.99    

14 4 6    

22.5 6     

35.25 9     
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Table B.180. Storm event #9 pH data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 7.48 6.57 6.6 6.64 

1.25 1 7.57 6.24 6.44 6.57 

4 2 7.67 6.57 6.77 6.86 

8.25 3 7.56 6.82 7.01 7.06 

14 4 7.49 7.18 7.3 7.41 

22.5 6 7.88 7.25 7.25 7.39 

35.25 9 7.87 7.24 7.31 7.46 

 

 

 

Table B.181. Storm event #9 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.00 0.00 0.00 0.03 

1.25 1 0.00 0.06 0.00 0.07 

4 2 0.00 0.04 0.05 0.05 

8.25 3 0.00 0.06 0.04 0.03 

14 4 0.03 0.05 0.03 0.03 

22.5 6 0.06 0.04 0.00 0.05 

35.25 9 0.05 0.03 0.00 0.05 

 

 

 

Table B.182. Storm event #9 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.02 0.19 0.18 0.17 

1.25 1 0.00 0.00 0.00 0.02 

4 2 0.00 0.00 0.00 0.00 

8.25 3 0.00 0.00 0.00 0.00 

14 4 0.00 0.00 0.00 0.00 

22.5 6 0.00 0.01 0.04 0.00 

35.25 9 0.06 0.04 0.04 0.07 
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Table B.183. Storm event #9 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 2.01 0.01 0.01 0.01 

1.25 1 2.00 0.50 0.39 0.65 

4 2 1.97 0.08 0.05 0.37 

8.25 3 2.06 0.04 0.07 0.41 

14 4 2.05 0.06 0.09 0.33 

22.5 6 2.10 0.05 0.02 0.12 

35.25 9 2.09 0.01 0.01 0.03 

 

 

 

Table B.184. Storm event #9 Org-N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.15 0.40 0.47 0.36 

1.25 1 0.49 0.60 0.67 0.52 

4 2 0.36 0.56 0.52 0.62 

8.25 3 0.32 0.45 0.47 0.59 

14 4 0.28 0.44 0.51 0.56 

22.5 6 0.33 0.47 0.44 0.59 

35.25 9 0.24 0.35 0.41 0.38 

 

 

 

Table B.185. Storm event #9 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 0.16 1.58 1.39 1.20 

1.25 1 0.11 0.06 0.06 0.04 

4 2 0.11 0.00 0.00 0.00 

8.25 3 0.12 0.00 0.00 0.00 

14 4 0.11 0.00 0.00 0.00 

22.5 6 0.12 0.00 0.00 0.00 

35.25 9 0.13 0.00 0.00 0.03 
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Table B.186. Storm event #9 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 - 68.42 0.60 0.77 0.81 

1.25 1 75.68 58.44 54.50 58.08 

4 2 74.16 73.56 72.54 73.22 

8.25 3 77.01 72.78 71.58 75.24 

14 4 76.00 75.33 75.78 75.02 

22.5 6 77.65 76.76 74.93 74.52 

35.25 9 76.12 74.24 73.44 73.85 

 

 

 

Table B.187. Storm event #9 TSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 -  0.03 1.80 2.00 

1.25 1 4.92 2.63 0.00 4.20 

4 2 5.55 2.73 1.75 2.89 

8.25 3 5.17 2.63 2.50 2.82 

14 4 4.22    

22.5 6     

35.25 9 3.13 1.13 1.45 3.98 

 

 

 

Table B.188. Storm event #9 VSS data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0.25 -  0.00 0.00 0.00 

1.25 1  1.43 0.00 0.00 

4 2  0.37 0.00 0.58 

8.25 3     

14 4     

22.5 6     

35.25 9     
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Table B.189. Storm event #10 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

2 14.63    

2 14.63    

2 14.63    

2 14.63    

2 14.63    

2 14.63    

 

 

 

Table B.190. Storm event #10 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

2 22.22    

2 22.22    

2 22.22    

2 22.22    

2 22.22    

2 22.22    

 

 

 

Table B.191. Storm event #10 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

2 29.67    

2 29.67    

2 29.67    

2 29.67    

2 29.67    

2 29.67    

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

209 
 

Table B.192. Storm event #10 DO data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0 -  0 0 0 

3 2 5.12 0 0.06 0.15 

4 2 5.12 0.1 0.04 0.14 

6 2 6.25 0.15 0.07 0 

8 2 5.82 0 0 0 

12 2 6.09 0.07 0 0.02 

18 2 6.00 0 0 0 

 

 

 

Table B.193. Storm event #10 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0 -  0.03 0.03 0.01 

3 2 0.01 0.12 0.04 0.05 

4 2 0.01 0.13 0.03 0.03 

6 2 0.01 0.07 0.03 0.03 

8 2 0.01 0.03 0.01 0.01 

12 2 0.01 0.01 0.01 0.01 

18 2 0.01 0.01 0.01 0.01 

 

 

 

Table B.194. Storm event #10 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0 -  0.23 0.20 0.28 

3 2 0.12 0.23 0.16 0.16 

4 2 0.12 0.20 0.18 0.15 

6 2 0.12 0.10 0.11 0.11 

8 2 0.15 0.03 0.07 0.09 

12 2 0.12 0.03 0.07 0.14 

18 2 0.12 0.02 0.08 0.11 
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Table B.195. Storm event #10 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0 -  0.02 0.01 0.02 

3 2 1.94 0.01 0.09 0.22 

4 2 1.94 0.02 0.24 0.37 

6 2 1.97 0.08 0.34 0.43 

8 2 1.91 0.15 0.41 0.52 

12 2 1.89 0.28 0.53 0.65 

18 2 1.86 0.45 0.60 0.75 

 

 

 

Table B.196. Storm event #10 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0 -  0.44 0.10 0.33 

3 2 0.10 0.13 0.05 0.12 

4 2 0.09 0.03 0.00 0.05 

6 2 0.09 0.00 0.00 0.00 

8 2 0.09 0.00 0.00 0.00 

12 2 0.09 0.00 0.00 0.00 

18 2 0.09 0.00 0.00 0.00 

 

 

 

Table B.197. Storm event #10 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

0 -  5.70 11.99 10.00 

3 2 60.99 50.71 44.58 46.65 

4 2 60.99 61.37 56.91 56.88 

6 2 62.66 61.82 60.47 61.83 

8 2 61.53 63.99 61.44 62.14 

12 2 60.90 64.18 62.87 62.99 

18 2 60.16 63.75 62.45 62.95 
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Table B.198. Storm event #11 flow data for the 30 cm column. 

Theoretical 

detention time (hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow rate 

(mL/min) 

3 9.76    

3 9.76    

3 9.76    

3 9.76    

3 9.76    

 

 

 

Table B.199. Storm event #11 flow data for the 45 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

3 14.81    

3 14.81    

3 14.81    

3 14.81    

3 14.81    

 

 

 

Table B.200. Storm event #11 flow data for the 60 cm column. 

Theoretical 

detention time 

(hr) 

Theoretical flow 

rate (mL/min) 

Flow rate 1 

(mL/min) 

Flow rate 2 

(mL/min) 

Average flow 

rate (mL/min) 

3 19.78    

3 19.78    

3 19.78    

3 19.78    

3 19.78    

 

 

 

Table B.201. Storm event #11 NH4
+
   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

12 3 0.01 0.12 0.05 0.05 

24 3 0.01 0.03 0.01 0.01 

42.75 3 0.01 0.03 0.01 0.01 

61.25 3 0.01 0.01 0.01 0.01 

86.25 3 0.01 0.01 0.01 0.01 
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Table B.202. Storm event #11 NO2
⎺   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

12 3 0.15 0.10 0.10 0.12 

24 3 0.18 0.02 0.05 0.13 

42.75 3 0.12 0.01 0.10 0.12 

61.25 3 0.11 0.12 0.10 0.13 

86.25 3 0.05 0.05 0.04 0.08 

 

 

 

Table B.203. Storm event #11 NO3⁻   -N data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

12 3 1.99 0.04 0.14 0.37 

24 3 2.01 0.23 0.30 0.57 

42.75 3 2.12 0.27 0.40 0.70 

61.25 3 2.04 0.47 0.43 0.65 

86.25 3 1.93 0.48 0.42 0.53 

 

 

 

Table B.204. Storm event #11 PO4
3
 ⁻-P data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

12 3 0.06 0.00 0.00 0.00 

24 3 0.08 0.00 0.00 0.00 

42.75 3 0.06 0.00 0.00 0.00 

61.25 3 0.11 0.00 0.00 0.00 

86.25 3 0.11 0.00 0.00 0.00 
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Table B.205. Storm event #11 SO4
2
 ⁻-S data. 

Sample time 

(hr) 

Theoretical 

detention time 

(hr) 

Influent 

(mg/L) 

60 cm column 

(mg/L) 

45 cm column 

(mg/L) 

30 cm column 

(mg/L) 

12 3 62.43 61.99 64.21 63.51 

24 3 61.97 64.63 64.83 65.05 

42.75 3 62.66 62.94 64.61 63.65 

61.25 3 60.49 62.42 62.17 61.79 

86.25 3 60.25 60.36 61.21 60.43 
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Appendix C; 

 

Tracer Study Data 

 

 

 

Table C.1. 60 cm column one hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 4  85 130  170 31 

5 0  90 140  175 26 

10 4  95 149  180 18 

15 4  100 147  185 20 

20 3  105 161  190 16 

25 3  110 160  195 16 

30 3  115 158  200 8 

35 5  120 160  205 10 

40 7  125 142  210 11 

45 15  130 124  215 2 

50 25  135 105  220 3 

55 38  140 88  225 14 

60 54  145 73  230 8 

65 73  150 60  235 7 

70 90  155 50  240 2 

75 106  160 41    

80 112  165 34    
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Table C.2. 45 cm column one hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 2  85 102  170 43 

5 1  90 113  175 40 

10 0  95 123  180 31 

15 2  100 128  185 28 

20 2  105 139  190 25 

25 3  110 146  195 27 

30 3  115 151  200 17 

35 6  120 160  205 15 

40 7  125 158  210 16 

45 12  130 151  215 11 

50 21  135 138  220 10 

55 34  140 122  225 9 

60 47  145 105  230 10 

65 62  150 86  235 9 

70 70  155 72  240 6 

75 74  160 60    

80 88  165 53    

 

 

Table C.3. 30 cm column one hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 0  85 98  170 52 

5 2  90 110  175 48 

10 0  95 118  180 41 

15 0  100 128  185 38 

20 0  105 137  190 34 

25 3  110 143  195 24 

30 3  115 145  200 27 

35 5  120 155  205 26 

40 7  125 153  210 30 

45 10  130 145  215 21 

50 18  135 136  220 20 

55 30  140 122  225 8 

60 43  145 108  230 17 

65 57  150 92  235 16 

70 71  155 79  240 12 

75 71  160 73    

80 81  165 60    
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Table C.4. 60 cm column three hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 3  255 110  510 33 

15 3  270 114  525 25 

30 4  285 126  540 24 

45 3  300 127  555 24 

60 4  315 120  570 18 

75 4  330 120  585 18 

90 0  345 113  600 19 

105 11  360 102  615 18 

120 16  375 95  630 17 

135 34  390 85  660 15 

150 54  405 78  690 18 

165 69  420 72  720 14 

180 73  435 63  750 16 

195 80  450 48  840 17 

210 96  465 43  1000 7 

225 97  480 43    

240 101  495 37    

 

 

 

Table C.5. 45 cm column three hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 0  255 115  510 34 

15 3  270 126  525 25 

30 4  285 132  540 26 

45 6  300 134  555 22 

60 4  315 130  570 20 

75 2  330 131  585 18 

90 1  345 126  600 18 

105 5  360 118  615 20 

120 13  375 110  630 18 

135 31  390 99  660 15 

150 51  405 86  690 18 

165 68  420 75  720 14 

180 79  435 61  750 16 

195 92  450 50  840 16 

210 100  465 43  1000 5 

225 103  480 43    

240 106  495 36    
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Table C.6. 30 cm column three hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 4  255 127  510 25 

15 0  270 134  525 20 

30 2  285 129  540 18 

45 4  300 126  555 15 

60 6  315 107  570 14 

75 8  330 100  585 12 

90 19  345 88  600 12 

105 40  360 77  615 13 

120 58  375 64  630 15 

135 78  390 60  660 12 

150 99  405 47  690 14 

165 107  420 42  720 13 

180 112  435 37  750 11 

195 120  450 29  840 12 

210 122  465 26  1000 7 

225 122  480 31    

240 123  495 24    

 

 

 

Table C.7. 60 cm column four hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 0  340 134  680 27 

20 0  360 129  700 22 

40 0  380 133  720 22 

60 0  400 134  740 19 

80 0  420 131  760 14 

100 0  440 127  780 15 

120 0  460 116  800 11 

140 0  480 103  820 12 

160 12  500 88  840 13 

180 55  520 78  960 8 

200 68  540 67  1440 3 

220 87  560 56  1680 4 

240 103  580 47  1920 3 

260 106  600 39  1940 3 

280 113  620 36  1960 3 

300 118  640 32    

320 122  660 29    

 

 



www.manaraa.com

218 
 

Table C.8. 45 cm column four hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 0  340 136  680 20 

20 0  360 135  700 18 

40 0  380 135  720 19 

60 0  400 131  740 14 

80 0  420 125  760 17 

100 0  440 114  780 14 

120 9  460 100  800 10 

140 35  480 87  820 11 

160 51  500 70  840 12 

180 67  520 61  960 7 

200 76  540 58  1440 4 

220 87  560 42  1680 3 

240 102  580 38  1920 4 

260 109  600 31  1940 4 

280 118  620 27  1960 4 

300 123  640 25    

320 127  660 24    

 

 

 

Table C.9. 30 cm column four hour detention time tracer study data. 

Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

 Time 

(min) 

KCL eq. 

(mg/L) 

0 0  340 139  680 19 

20 0  360 134  700 18 

40 0  380 127  720 17 

60 0  400 110  740 15 

80 0  420 98  760 13 

100 6  440 82  780 14 

120 50  460 71  800 11 

140 85  480 60  820 11 

160 95  500 49  840 11 

180 106  520 44  960 6 

200 115  540 36  1440 4 

220 116  560 32  1680 4 

240 126  580 29  1920 4 

260 125  600 26  1940 4 

280 128  620 22  1960 4 

300 135  640 23    

320 137  660 21    
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Appendix D: 

SWMM-5 Data 
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